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Abstract

The optimization problem of minimizing a linear objective function over a gen-
eral convex body given only by a weak membership oracle is a central problem
in convex optimization. Traditional methods require the (expensive) construction
of separating relations (cuts) or gradient information (which is often expensive).
We demonstrate how a sampling procedure can be used as the central routine in
a randomized polynomial time algorithm for approximately minimizing a linear
objective function over an up-monotone convex set presented by a membership or-
acle. The sampling procedure is a Markov chain that uses only local membership
tests. We further demonstrate a direct application of this technique to an important
stochastic optimization problem called “component commonality.”

A second application of the above sampling scheme is a statistical hypothesis
testing procedure involving contingency tables. The test involves counting con-
tingency tables (matrices of non-negative integers) obeying given row and column
constraints which is known to be ]P hard. Under fairly natural assumptions the
Markov technique yields an effective procedure for approximating, to any de-
sired accuracy, the necessary counts. We also develop a powerful exact counting
scheme, for fixed dimension, and use it to validate the random technique.
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Chapter 1

Introduction

This thesis applies samplers based on rapidly mixing Markov chains to both con-
vex optimization and counting contingency tables. A sampler, S, is a randomized
algorithm (or random variable) that, given a description of a feasible set and prob-
ability measure µ on the feasible set, generates a feasible element such that for any
non-negligible µ-measurable set V , Pr[S ∈ V ] ≈ µ(V ). This thesis is primarily
concerned with samplers that generate points from convex bodies in Rn which are
presented by membership oracles.1[23, 21, 5, 40]

The first part of this thesis is joint work with Ravi Kannan and Sridhar Tayur
and is a randomized polynomial time algorithm to approximately minimize a lin-
ear function c over an up-monotone convex set, K, (i.e., a convex set with the
property that if x belongs to the set and y is component wise greater than or equal
to x, then y belongs to the set also) in the positive orthant given by a member-
ship oracle.[39] By “membership oracle” we mean a black box procedure that can
tell us if x ∈ K. It does not supply any additional structural information. It is
also assumed that an initial point xf ∈ K is known. This model is motivated
by a stochastic optimization problem called component commonality [37] where
membership can be tested by performing a numerical integration, but separating
hyperplanes or even gradient directions are expensive to obtain.

Our approach is to optimize using only local information. We present a non-
uniform sampler for Rn that obeys a probability distribution that grows geomet-
rically in the direction of the objective function and falls off geometrically in dis-
tance away from the convex body. The central technique is to design the distribu-
tion to be smooth enough that the sampler can converge in polynomial time.

1Actually the intersection of a very fine lattice in Rn with a convex body.
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The second application of this thesis is joint work with Martin Dyer and Ravi
Kannan and is a near-uniform sampler and an approximate counting scheme for
two way contingency tables that simultaneously obey row and column constraints.
A two way contingency table is a matrix of non-negative integers. These tables are
often used to represent how many individuals have pairs of attributes (i.e. rows are
indexed by one attribute, columns by the other) in a population.[2] Diaconis and
Efron [16] have proposed a significance test and a model fit that can be performed
with the aid of a near-uniform sampler for tables that obey given row and column
constraints.

We show how, given certain assumptions, simple geometry can be used to
convert a near-uniform convex body sampler to a near-uniform contingency table
sampler. That is: given certain easily met conditions on the row and column
totals our continuous techniques can solve this discrete problem. An approximate
counting scheme is designed using this sampler.

We also develop, with Bernd Sturmfels, an effective exact counting scheme
for fixed dimension contingency tables. This scheme helped validate the random
results and allowed us to analyze the asymptotic accuracy of some estimation
schemes in the literature.

1.1 Convex optimization.
In principle any convex optimization problem can by solved in polynomial time
by the Ellipsoid Algorithm. One can also see Vaidya[53] for a state of the art
general convex programming algorithm. However, these approaches all require
a separation oracle. A technique described by Yudin and Nemirovskii can be
used to convert a membership oracle to a separation oracle [33], but this is quite
expensive. Previous efforts to solve component commonality have used non-linear
programming methods, but these require that gradients be calculated, which can
be as expensive as computing separating cuts.

We solve the following more general problem: optimize a linear function over
an up-monotone set presented by a membership oracle. A set K ⊆ Rn is called
up-monotone if x ∈ K and y ≥ x → y ∈ K. This property holds for linear
programs of the form Ax ≥ b when the matrix A is non-negative. Many supply
and covering problems have this form. We do not require that K be bounded
but require, with out loss of generality, that our objective function, c, be strictly
positive and K be contained in the non-negative orthant of Rn. Thus for any d we
have the set K

⋂ {x ∈ Rn | c · x ≤ d} is bounded.
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The component commonality problem is a stochastic or chance constraint opti-
mization problem. Good sources for this problem are [54] and [37]. The informal
description is as follows. Every month a factory receives orders for its m prod-
ucts. The total orders for a month are considered a vector in Rm (we will not deal
with the integral nature of this problem at this time) distributed according to some
log-concave density.2 We assume that we can evaluate F (d) at any point d ∈ Rm.
This is enough to allow us to numericly integrate F over various regions. We also
have a n×m non-negative matrix A in which we interpret Aa,b as the amount of
component a used in the production of one unit of product b. Our goal is to find
a vector x ∈ Rn that is a stocking level of components so we have Ad ≤ x with
probability at least α when d is drawn from the order distribution. That is if we
stocked our warehouse according to the plan x we would be able to fill all our
orders with probability at least α. It should be clean that component commonality
is a special case of up-monotone optimization.

1.2 Contingency tables.
Diaconis and Efron [16] have developed a method of modeling distributions that
allows one to make some qualitative and quantitative statements about an un-
known distribution. This technique is potentially much more useful than the usual
task of proving the unknown distribution is not various test distributions. Their
scheme requires several significance tests which come down to counting contin-
gency tables. Unfortunately the counting problem is difficult (]P hard) even for
2× n tables.

An example (adapted from [17]) is in order (this is example should not be
construed as being the only application).

The table 1.1 is from Snee [49]. A uniform generator of contingency tables
could be used to implement many different statistical tests, we give an example
here chosen for simplicity (rather than power or generality). Suppose a census
were performed where 50 different statistics (hair color, eye color, income level,
...) each divided into discrete categories (Black, Brunette, Red, Blond; Brown,
Blue, Hazel, Green; 0 to 6999 krona, 7000 to 13999 krona ...) were collected
on 592 people. A plausible task for a statistician would be to identify pairs of

2A density, F , is log-concave if log(F ) is concave. A density, G, is concave if G(λx + (1 −
λ)y) ≥ λG(x) + (1 − λ)G(y) for all x, y and 0 ≤ λ ≤ 1. So F is log-concave if and only if
F (λx + (1 − λ)y) ≥ F (x)λF (y)1−λ with x, y, λ as above. Any positive concave function is
log-concave.
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Eye Color Hair Color Total
Black Brunette Red Blond

Brown 68 119 26 7 220
Blue 20 84 17 94 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64

Total 108 286 71 127 592

Table 1.1: Eye v.s. Hair Color, observed.

Eye Color Hair Color Total
Black Brunette Red Blond

Brown 40 106 27 47 220
Blue 39 104 26 46 215
Hazel 17 45 11 20 93
Green 12 31 7 14 64

Total 108 286 71 127 592

Table 1.2: Eye v.s. Hair Color, nearly independent.

traits that support some meaningful relationship. This could be the first step in an
epidemiological study. One technique would be to examine the

(
50
2

)
= 1225 two

way tables. Table 1.1 could be one such pairing. The statistician does not wish to
look at 1225 two way tables- so an automatic technique of identifying interesting
ones is required.

Let X be m by n a table and let ri =
∑n
j=1 Xi,j and cj =

∑m
i=1Xi,j . X

would be considered uninteresting if the variables were independent, or equiva-
lently Xi,j ≈ ricj/592. A nearly independent table would look like table 1.2.

Comparing these two tables one might conclude that people with brown eyes
and blond hair occur less often in the observed table than in the nearly independent
table. The question is not if we have discovered a relationship between hair and
eye colors in the table at hand, but if the relationship observed in this table is a
likely due to sampling error. One could compute the χ2 statistic of the observed
table (which is a measure of departure from independence) and get a value of
138.29. The question then becomes is 138.29 a typical or atypical amount of
deviation from independence? One method put forward by Diaconis and Efron
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to determine this is to compute the significance level of the observed table with
respect to the uniform distribution. This is defined as the ratio of the number of
integer matrices matching our row and column totals that have a χ2 statistic of at
least 138.29 to the total number of integer matrices matching our row and column
totals. That would be to say “of all the possible tables with the same disjoint
distributions (ie. with the same ri and cj) of hair and eye colors what proportion
have χ2 ≤ 138.29”.

For the table in question asymptotic and volume techniques gave “about
10%”[16] and later randomized techniques gave 16.3% (with no confidence
interval)[20]. My current randomized simulation work shows that the true value
is between 15.3 and 15.7 with a confidence level of over 99.7%.3 In any case,
the result is that about 1/6 of all possible tables with the same row and column
sums look more independent than the observed one. So the relationship between
eye color and hair color observed in the table is not very strong and would not be
a good candidate for further investigation.4 The two way tables could be ranked
according to how atypical they are (the significance of their χ2) and the human
statistician could then be presented the top few dozen such tables.5

With a counting technique (and some Bayesian priors) much more sophisti-
cated analysis can be performed.

1.3 Basic Markov chains.
Here we will define the Markov chain terminology we are using in this thesis.
We will consider a Markov chain to be a finite directed graph G = (V,E) and a
transition function P : V × V → R such that

P (x, y) ≥ 0 ∀x, y ∈ V
P (x, y) > 0 ∀(x, y) ∈ E
P (x, y) = 0 ∀(x, y) 6∈ E∑
y∈V P (x, y) = 1 ∀x ∈ V

.

3This should illustrate the difficulty encountered analyzing tables as small as 4× 4.
4It is important to note that we are not saying that the relationship doesn’t exist or is statistically

insignificant. It is also important to remember that when the number of variables is commensurate
with the sample population that one would expect many statistically significant but meaningless
cross correlations.

5They could then discover a relationship like “unusually few people who juggle knives drink
every day” indicating either few people partake in both or the combination is fatal.
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Note that this definition requires (x, x) ∈ E if
∑
y∈V y 6=x P (x, y) < 1. We interpret

P (x, y) as the probability that the Markov chain will be in state y at time t + 1
given that it is in state x at time t (or P [Xt+1 = y|Xt = x]). We will also consider
our Markov chain as a linear system where Xt will be a vector in RV and by an
abuse of notation we take P to be the |V | × |V | matrix such that Px,y = P (x, y).
The idea is that if Xt is a vector such that Xt ≥ 0 and 1 ·Xt = 1 we can interpret
(Xt)v as P [Xt = v], the probability that our Markov chain is in state v at time t.
The Markov chain then progresses under the simple relation

Xt+1 = XtP.

As one would expect we are immediately concerned about the eigenvalues and
eigenvectors of these systems.

We will not treat Markov chains in their full generality, but discuss only the
“nice” chains used in this thesis. For a much more general treatment one should re-
fer to [12]. “Nice” involves some technical definitions from the theory of Markov
chains, but we will define all the terms used in this section. The chains we will
use will be chosen to be irreducible, aperiodic and time-reversible. Each of these
terms has an interpretation in terms of stochastic processes, graph theory and lin-
ear operators. To motivate the definitions we will point out all three interpretations
where appropriate.

A finite Markov chain is called irreducible if P [Xt = y infinitely often] = 1
for all all y ∈ V . This means that the chain has no transient states (states that
can not be reached from other sets of states). If fact it is exactly equivalent to the
underlying graph G being strongly connected (for every a, b ∈ V there exists a
directed path of edges in E from a to b). This condition is stronger than saying
that the matrix P is an irreducible matrix but is equivalent to (1

2
P + 1

2
I)|V | > 0.

An irreducible Markov chain is stationary or aperiodic if ∀x, y ∈
V limt→∞ P [Xt = y|X0 = x] exists. This means that for any k Xt and Xt+k

are distributed identically as t→∞. It is easy to see that for an irreducible aperi-
odic Markov chain the above limits must independent of x and it makes sense to
write limt→∞ P [Xt = y]. An irreducible Markov chain is aperiodic if and only if
the least common divisor of the lengths of all cycles in G (counting self loops as
cycles of length 1) is equal to 1. The linear operator interpretation of aperiodic is
that all eigenvalues of the operator are real (and ≥ −1). If the chain is irreducible
and aperiodic then the eigenvalue 1 occurs with multiplicity exactly one and the
unique eigenvector π such that 1 ·π = 1 corresponding to this eigenvalue is called
the stationary distribution. We then have ∀y ∈ V πy = limt→∞ P [Xt = y] and
πy > 0 for all y ∈ V .
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An irreducible aperiodic Markov chain is time reversible if ∀(x, y) ∈
E π(x)P (x, y) = π(y)P (y, x). Time reversibility has a number of interpreta-
tions. The most obvious is that for every edge (x, y) ∈ E we have (y, x) ∈ E and
limt→∞ P [Xt = x∧Xt+1 = y] = limt→∞ P [Xt = y∧Xt+1 = x], or each edge di-
rection is equally likely in the limit. In terms of linear operators if a Markov chain
is irreducible, aperiodic and time reversible then the matrix DPD−1 is symmetric
where D is the |V | × |V | diagonal matrix such that Dx,x =

√
π(x). Thus P is in

fact similar to a diagonal matrix.6

From now on we will assume our Markov chain is irreducible, aperiodic and
time reversible. We have for such chains if q is any vector that obeys the time
reversal equation ∀x, y ∈ V P (x, y)qx = P (y, x)qy then q = λπ for some scalar
λ. This property is very useful in designing Markov chains with specific stationary
distributions.

If G is a strongly connected symmetric graph ((x, y) ∈ E ↔ (y, x) ∈ E)
there is a very powerful general method of designing a Markov chain by choosing
the transition probabilities according to the “Metropolis filter.” Suppose we have
a positive function F and we wish that the stationary distribution π of our Markov
chain has πx = F (x)/(

∑
y∈V F (y)) ∀x ∈ V . For x ∈ V let N(x) be the set of all

y ∈ V, y 6= x, (x, y) ∈ E. Let Υ be maxx∈V |N(x)|, the largest degree of any
vertex in G and define

P (x, y) =


1

2Υ
min(1, F (y)

F (x)
) y ∈ N(x)

1−∑z∈N(x) P (x, z) x = y
0 otherwise

. (1.1)

The Markov chain with transition matrix P is irreducible, aperiodic and time-
reversible. The irreduciblity come directly from G. Aperiodicity because
P (x, x) > 0 for all x. The chain is time-revisable because if x 6= y and

6It is interesting to notice that time reversibility taken alone does not have such a simple inter-
pretation as the 3 state Markov chain with transition matrix

P =

 1
2

1
2 0

0 1
2

1
2

0 0 1


is not similar to any symmetric or diagonal matrix.
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P (x, y) 6= 0 then it time-reverses with F :

P (x, y)F (x) = 1
2n

min(1, F (y)
F (x)

)F (x) =
1

2n
min(F (x), F (y)) =

1
2n

min(1, F (x)
F (y)

)F (y) = P (y, x)F (y).

Furthermore this is enough to show that the unique stationary distribution π is
such that πx = F (x)/(

∑
y∈V F (y)) ∀x ∈ V . It is very important that F enters

into the transition probability equation as a ratio- so one never actually has to
pre-compute the normalizing factor

∑
y∈V F (y) as this factor is often the count or

volume that one needs the Markov chain to estimate.
We want our Markov chain to be rapidly mixing.[3] To explain this property

we pick a measure of similarity between distributions on V . Let pA and pB be
two probability distributions on V . The distance from pA to pB can be defined a
number of ways:

k

√∑
y∈V |pA(y)− pB(y)|k lk distance

maxy∈V |pA(y)− pB(y)| l∞ distance∑
y∈V

(pA(x)−pB(x))2

pA(x)
chi-sq distance with respect to pA.

We use l1 or variational distance because it is the distance used in many of the
papers in the literature and has a slightly simpler interpretation. Let d(pA, pB)
denote one of the above distance measures. Let pt be the distribution at time time
((pt)y

def
= P [Xt = y]) it is well known that for any Markov chain as above that

there is a constant χ < 1 such that d(π, pt) ≤ χtf(π, p0) where f is some func-
tion of π and p0. For the chi-sq distance we can take f(π, p0) =

∑
y∈V

(π(x)−p0(x))2

π(x)

(which is again the chi-sq distance, simplifying subsequent analysis).[27] A
Markov chain is rapidly mixing if 1/(1 − χ) is smaller than some polynomial
in parameters we care about.

We will be looking at chains whose states are lattices in Rn intersected with
bodies of diameter d whose transitions correspond “King’s moves.” In this case
rapidly mixing will mean that 1/(1−χ) is bounded above by a polynomial in n and
d. It would be nice if rapidly mixing had a simple definition such as “polynomial
in log(|V |)” but it is easy to show that Markov chain on the points in x ∈ Zn

≥0

with xi < d has dn states and has 1/(1 − χ) ∈ O(nd2) which is not polynomial
in log(|V |) = n log d. We wish to consider this chain rapidly mixing, so we are
forced to abandon any such simple definition of rapidly mixing. It is important
to notice that the graph-diameter of such a Markov chain is O(nd) thus our chain
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is rapidly mixing in the sense it mixes in time polynomial in the diameter of the
chain (instead of the much weaker property of mixing in time polynomial in the
number of states).

1.4 Some geometric Markov chains.
Here we quickly outline some of the typical Markov chains used to generate points
from convex regions. All the Markov chains in this section are designed by pick-
ing a finite set of points from inside a convex region as the set of states. The
underlying graph G = (V,E) of the Markov chain is then chosen as above and
such that for each state it is easy to generate a neighbor with probability P (x, y).

1.4.1 King’s moves
The idea of “King’s moves” (used in both the optimization problem and for con-
tingency tables) is to have the set of states of the Markov chain be some affine
translate of the standard integer lattice. The edges in this Markov chain are the
states that differ by one unit in exactly one coordinate. These are not the moves
that the King makes in chess (which would allow a unit difference in any number
of coordinates) but for lack of a better name have been called “King’s moves”.
In this scheme each state in the Markov chain is identified with the cube consist-
ing of points closest to the state. States roughly correspond to volume elements
and edges correspond to facets of cubes (or area elements). This correspondence
of states and transitions to simple geometric objects is of central importance in
analyzing the behavior of these Markov chains.

1.4.2 Ball moves
Ball moves, and the related “Normal moves”, also have a strong geometric inter-
pretation. In ball moves each point in Rn is a state in the Markov chain (actually
one is forced to discretize space on a very fine grid, but for all intents and purposes
one deals with a Markov chain on Rn) and transitions are vectors drawn uniformly
from a ball (or in the normal case vectors drawn from Rn using the normal density
function). A transition corresponds to adding a vector to the current state to get a
new state. This is very much like a discrete time Brownian process. In this treat-
ment one rarely discusses individual states but instead reasons about, measurable,
collections of states. The probability of moving from a given state into a set of
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states is then the proportion of the measure of the step set (ball or normal) that is
inside the destination set.

1.4.3 Gibbs sampler
The Gibbs sampler is a classic method used in statistics. What one does is either
run through coordinate directions in a cyclic order or pick them at random. When
one has coordinate direction one then generates a point on the line passing through
the current point in the given coordinate direction. The idea behind this method is
to mix perfectly with respect to one variable at a time. The hope is that in relatively
few runs through the variables that the process will mix. Gibbs has the advantage
that the moves, which seem quite powerful, are often quite easy to implement.
This method has not been well characterized as a Markov chain. Most proofs of
mixing time prove only that Gibbs is not much worse than King’s moves. These
moves were also called “Rooks moves” in Applegate’s thesis.

1.4.4 Hit and run
Hit and run is the name of an important class of stochastic techniques.[55, 56,
48, 9] Hit and run is used in non-linear programing and it is of interest to this
thesis that it was recently shown to be rapidly mixing by Martin Dyer and Leen
Stougie.[25] Then method is natural but has the weakness that no one has iden-
tified a simple geometric quantity that predicts the mixing rate like isoperimetry
does for King’s or ball moves. In Hit and Run one picks a direction r uniformly
from the surface of the unit ball and then in one step generates a point distributed
according to F (the density function we are trying to achieve) restricted to the ray
emanating in the direction of the ray. It is interesting to note that this chain is time
reversible without any application of the Metropolis filter, just by the fact that a
ray r and −r are generated with equal probability.

1.5 Counting/computing volume.
If one can count lattice points one can compute volumes and the converse is often
true. The following is taken from Gruber and Lekkerkerker [34].

A lattice polytope is a polytope with all integral vertices. For a lattice polytope
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P and natural number k we have

](Zn ∩ kP ) =
n∑
i=0

Li(P )ki

where the Li are rational numbers depending only on P and n. Let f be any
function from the set of all lattice polytopes. We say that f is unimodular invariant
if for any lattice polytope P and unimodular integral transformationU and integral
vector u:

f(UP + u) = f(P ).

We say that f is additive if for all lattice polytopes P1, P2 such that P1 ∪ P2 is
again a lattice polytope then

f(P1 ∪ P2) + f(P1 ∩ P2) = f(P1) + f(P2).

A theorem of Betke’s shows if f is unimodular invariant and additive (volume is
such a function) then f(P ) =

∑n
i=0 λiLi(P ) for all P where Li are as above and

λi are scalars depending only on f (independent of P ). Thus the ability to count
lattice points is in some sense universal for a large class of invariants of integral
polytopes.

The volume of a convex body differs from the number of lattice points in the
convex body by an amount proportional to the number of lattice points whose
Vornoi cells are not completely covered by the body or its compliment. Often, as
is the case with contingency tables, the body contains a reasonable sized copy of a
n-cube and therefore the volume is a good approximation of the number of lattice
points in the body. This allows one to generate a lattice point from a distribution
arbitrarily close to uniform (by a rejection sampling technique) and then generate
estimates for the number of lattice points with any desired level of accuracy.
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Chapter 2

Up Monotone Optimization

2.1 Membership model.
We are interested in minimizing a linear function, c, over a convex body K ⊂ Rn

presented by a membership oracle. This is the most general form of a linear
convex optimization problem. Under the “oracle” model [33] the convex body K
is presented as a tape containing (n, x, r, R) where n is dimension of space we are
working in, x ∈ Qn is a rational point in K, r > 0 is such that Br(x) ⊆ K and R
is such that K ⊆ BR(x), where Br(x) denotes the ball of radius r centered at x.
It is also assumed that one can determine if y ∈ K for any y ∈ Rn. In this model
the only optimization algorithms known to run in polynomial time are relatives of
the classic ellipsoid method.

A large problem with these method for convex optimization are that separating
inequalities are required to run the algorithm. Given a point x ∈ Rn, x 6∈ K a
separating inequality for K and x is a vector a and number b such that a · x > b
and ∀y ∈ K a · y ≤ b. The fact that any two closed disjoint convex sets can be
separated by such a linear relation is one of the central properties of convexity.
Separating relations can be derived from a membership oracle [33, 43] but the
reduction is complicated and expensive.

2.2 Algorithm outline and time bounds.
Using the membership oracle, we approximately minimize a linear function over
an up-monotone convex feasible set in the positive orthant as follows. We may as-
sume a suitable upper bound on the variables so we can enclose this feasible region
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in a rectangle (in n dimensions). At the heart of our approach is a positive real-
valued logarithmically concave function F on the rectangle with the following
properties: (1) the integral of F over a region consisting of near-optimal solutions
is at least a constant fraction of the integral of F over the whole feasible set, and
(2) the integral of F over the feasible set is at least a constant fraction of the inte-
gral of F over the entire rectangle. Thus, if we pick a “random sample” from the
rectangle with probability density proportional to F (we refer to this throughout as
“sampling according to F ”), we would get a near-optimal solution with constant
probability; this probability can be boosted by repeated sampling. Our algorithm,
then, is simply a choice of F (determined by two parameters α, a damping factor
favoring feasible points, and β, a bias favoring points with better objective values)
and a method to obtain a sample according to F . We show that a certain biased
random walk (on the uniform grid of size δ, to be determined later), starting from
a feasible solution (xf ), is indeed able to pick a random sample from the feasible
set with probability (approximately) proportional to F . While it is relatively easy
to argue that in the steady state, this random walk picks a sample with density
proportional to F , it is nontrivial to show that this steady state is approached in
a polynomial number of steps. To accomplish this central result, we draw on re-
cently developed results in the theory of rapidly mixing Markov Chains as well as
on random walks in convex sets [23] , [5]. The latter paper gives a technique for
sampling from log-concave distributions which we use here, although, we have
tried to make this description self-contained by giving as many details as possi-
ble. Our random walk can be executed with only local knowledge of F as well as
a membership (not a separation) oracle for the feasible set.

Given an instance of the problem (a membership oracle for K and objective
function c > 0), ε > 0 (relative error), κ > 0 (failure probability) and an initial
feasible point xf , the algorithm succeeds with probability at least 1− κ in finding
a qalg ∈ Rn which is feasible and such that c · qalg ≤ (1 + ε)(c · qopt). Rather than
come within ε of the optimal in one long random walk, we develop an adaptive
algorithm which improves the feasible solution in stages (by iteratively refining
the gap between a known feasible solution and a probabilistic point-wise lower
bound lower bound L on optimal cost). This “staging” of the algorithm decreases
the run-time’s dependence on ε.

Each stage begins with a feasible solution xf and a probabilistic “lower bound”
L where if there is a feasible x with c · x < L, then the algorithm has failed. (We
will of course ensure that the probability of failure is low.) We refer to c · xf − L
as the “gap” (at the beginning of the stage). At the end of the stage, we have a
new lower bound and a new feasible solution; we ensure that the gap at the end of
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a stage is at most 1/2 of the gap at the beginning. We stop when the gap is at most
ε times the value of the cost lower bound. The algorithm is described in detail in
figure 2.4 and justified in section 2.7, but we give here a short verbal description.

Each stage proceeds as follows: the feasible set is enclosed in a rectangular
solid. We devise a log-concave function F on the rectangle with the two properties
described above. [The function F has two components: a “penalty” (called the
gauge function in what follows) for going out of the feasible set which increases
as we become “more infeasible” and a bias (drift) which favors low objective
function value. In some vague sense, this is similar to Lagrangian relaxation with
both feasibility and optimality represented by one function.]

We then discretize by dividing the rectangle into small cubes. We perform a
random walk on the cubes with transition probabilities depending on F . It will be
easy to see that the steady state probabilities of this random walk will be propor-
tional to F . We will also show fast convergence to the steady state, so that after a
polynomial number of steps, we are “close” to the steady state probabilities.
After doing the random walk for this number of steps, one of the following two
scenarios occurs:

(i) We have found a feasible solution whose value cuts down the gap by a
factor of at least 1/2. In this case, we replace our old feasible solution by this and
go to the next stage.

(ii) Otherwise, we have (probabilistic) proof of a greater lower bound and we
go to the next stage with this new lower bound (again cutting the gap down by a
factor of 1/2).

Although F has been devised accurately to have the desired properties, several
errors are introduced in the sampling procedure. There are errors due to discretiz-
ing into small cubes, due to the inexact computation of the gauge function and
due to the fact that the lower bounds are only probabilistic. The management of
these errors is the main focus of section 2.5.

Our main result is two bounds on the running time of the algorithm. [The
running time is bounded above by the minimum of the two.]

If ν is the ratio of the value of the given initial feasible solution to the optimal
value, ε is the required relative error, 1−κ the required success probability and n,
the dimension of the up-monotone convex feasible set K, the first bound is

O

n
7
(
log

(
n
ε

))2
log

(
log( 1

ε )
κ

)
log

(
ν
ε

)
ε2

 .
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Figure 2.1: The basic geometry.

If in addition, we are given xl > 0 such that ∀y ∈ K, we have xl ≤ y and an
xu such that there is an optimal solution z with z ≤ xu (so we can replace K by
K ∩ {x : x ≤ xu}), then we also have a bound

O

n5


∥∥∥xu − xl∥∥∥

∞
εmini xli

2ln

n
∥∥∥xu − xl∥∥∥

∞
εmini xli

2

ln(
1

κ
)

 .
The rest of the chapter is organized as follows. Section 2.3 notes that the

CC problem falls into the framework of up-monotone convex sets and has some
general remarks. Section 2.4 constructs the appropriate log concave and gauge
functions that are to be used in each stage of the algorithm. Section 2.5 describes
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the random walk to be performed at any stage of the adaptive algorithm, and
contains the analysis of the errors introduced due to discretization, gauge function
approximation and walking for finite number of steps. In section 2.6, we find a
bound on the spectral gap of the Markov chain, which allows us to use results on
rapid mixing to provide a bound on the number of steps required in any stage.
In section 2.7, we prove the adaptive algorithm’s correctness and run time, and
present two variants and prove their run times. Proofs for certain lemmas have
been deferred until the end of the chapter.

2.3 The component commonality problem.
The problem was described in detail in the Introduction. IfU denotes the matrix of
the uij ’s there, let y = y(d) = Ud. Under the assumption that h(·) is log-concave,
it is easy to see that y has a log-concave density. Let D denote the density of the
y. Let µD denote the corresponding measure. (So for any measurable set S,
µD(S) =

∫
S D.) Then the feasible set K of stock-levels can be expressed as

K = {x ∈ Rn : µD(dom(x)) ≥ γ}

where dom(x) is {y : y ≤ x}. It is easy to show that K is convex ([54]). It is also
clearly up-monotone.

2.3.1 Why component commonality is convex.
It is clear that component commonality, as described in the introduction, is an
up-monotone problem contained in the positive orthant. It is also easy in practice
to find an initial feasible stocking. So if the feasible set is convex then it fits into
our monotone optimization scheme. Let K is the feasible region of a component
commonality problem its convexity follows from a theorem of Prékopa [54] but
it is worthwhile to see how this is proven directly from the Brunn-Minkowski
theorem.[10] The Brunn-Minkowski theorem is: if Vol is the standard volume
function and A,B are two compact convex sets in Rn then the function

f : [0, 1]→ R : f(λ) = Vol(λA+ (1− λ)B)1/n

is concave.[10] If our density F was the indicator function of a convex set B
(1 if x ∈ B, 0 otherwise) then the component commonality problem would be
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convex because then the probability that a stocking x is sufficient would be ex-
actly Vol({d ∈ Rm+ | Ad ≤ x})/Vol(B) and we would have for any two feasi-
ble stockings x, y and λ ∈ [0, 1]

Vol({d ∈ Rm+ | Ad ≤ λx+ (1− λ)y})1/m

≥ Vol(λ {d ∈ Rm+ | Ad ≤ x}+ (1− λ) {d ∈ Rm+ | Ad ≤ y})1/m

≥ λVol({d ∈ Rm+ | Ad ≤ x})1/m + (1− λ) Vol({d ∈ Rm+ | Ad ≤ y})1/m

≥ min
(
Vol({d ∈ Rm+ | Ad ≤ x})1/m,Vol({d ∈ Rm+ | Ad ≤ y})1/m

)
.

Thus λx + (1 − λ)y is feasible and the feasible region must be convex
(since x, y were arbitrary). The first inequality is because the Minkowski
sum of {d ∈ Rm+ | Ad ≤ x} and {d ∈ Rm+ | Ad ≤ y} is contained in the
set {x ∈ Rm+ | Ad ≤ λx+ (1− λ)y}. The second inequality is the Brunn-
Minkowski theorem and the third is an obvious fact about concave functions.

To extend the argument to more general F we define:

∆a(x) = {d ∈ Rm+ | Ad ≤ x, F (d) ≥ a} ,
the set of points with density ≥ a that do not exceed the stocking vector x. Again
by simple properties of the Minkowski sum we have for λ ∈ [0, 1]

∆a (λx+ (1− λ)y) ⊇ λ∆a(x) + (1− λ)∆a(y).

And, by Brunn-Minkowski,(∫
(λ∆a(x)+(1−λ)∆a(y))

1

) 1
m

≥

λ

(∫
∆a(x)

1

) 1
m

+ (1− λ)

(∫
∆a(y)

1

) 1
m

so ∫
∆a(λx+(1−λ)y)

1 ≥ min

(∫
∆a(x)

1,
∫

∆a(y)
1

)
Using that for any z ∫

{d | Ad≤z }
F (d) =

∫ ∞
a=0

∫
∆a(z)

1 d a

we can integrate over levels of the density F and get∫
∆0(x+(1−λ)y)

G ≥ min

(∫
∆0(x)

G,
∫

∆0(y)
G

)
thus if x, y ∈ K then (λx+ (1− λ)y) ∈ K and K is convex.
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2.3.2 Hardness of discrete version of component commonality
For m points y1, y2, . . . ym in Rn and x also in Rn let dom(x) be the set
{i | i ∈ 1 · · ·m, x ≥ yi}.

Theorem 1 Given m points y1, y2, . . . ym in Rn, a fraction γ, a positive vector c
and a real number ζ , deciding if there exist an x ∈ Rn such that x ≥ yi is satisfied
for at least γm different i ’s and c · x ≤ ζ is NP complete.

Proof sketch: Let G = (V,E) be an undirected graph with vertices V =
{1, 2 · · ·n} and edges E. Given an integer k, the clique problem is: “does G have
a complete induced subgraph on some k vertices?” For each e ∈ E let ye ∈ Rn

be the vector such that

yei =

{
1 vertex i is an endpoint of edge e
0 otherwise

Let c = ~1, γ = (k − 1)k/(2|E|) and ζ = k.
Let x be a solution to the above problem. WLOG assume x is a 0-1 vec-

tor and define Gx = (Vx, Ex) to be the induced subgraph of G where Vx =
{i ∈ V | xi ≥ 1}. We then have |Gx| = c · x and |Ex| = | dom(x)|. So we
see that x such that c · x ≤ k and | dom(x)| ≥ k(k− 1)/2 correspond precisely to
induced subgraphs of G with ≤ k vertices and ≥ k(k − 1)/2 edges: k-cliques. 2

This result compliments the recent result of Martin Dyer and Leen Stougie[25]
which shows that two stage stochastic programming with simple recourse is ]P
complete.

2.3.3 General remarks
While we do assume that a membership oracle is available for K, we do
not assume that a separation oracle is available. By a theorem of Yudin and
Nemirovskiiǐ it is known that membership and separation are polynomial time
equivalent for convex programming problems like this one [33]. But the conver-
sion has a large exponent, and the approach here is more efficient.

Instead of computing the integral each time the membership oracle is called,
we could instead pick m samples y1, y2, . . . ym according to D at the outset and
then for each query x to the membership oracle for K, say yes to the query if
and only if for at least γm of the yi, we have x ≥ yi. It is easy to show by
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standard techniques that for m large enough, this suffices as a an approximate
test of membership in K. We do not go into the details here. Also, in the actual
situation, either the yi may be available from past data or if one hypothesizes a
particular log-concave density D, we may draw samples according to the density
using the techniques of [5].

One may be tempted to solve the discrete problem: given m points
y1, y2, . . . ym in Rn, a fraction γ, a positive vector c and a real number ζ , does
there exist an x ∈ Rn such that x ≥ yi is satisfied for at least γm different i ’s
and we also have c · x ≤ ζ ? In this generality, we show (in the appendix) that the
problem is NP-hard. So one needs to exploit the special nature of K, namely its
convexity.

For an NLP approach to the CC problem, see [37] and references provided
there.

2.4 The function F : bias and damping.
Let K be an up-monotone convex set contained in the positive orthant of
Rn, xf a known feasible point and c > 0 the cost vector in the linear
objective function. For real numbers L ≥ 0, T > 0, we define a log-
concave distribution B(L,T ) on Rn such that if L ≤ inf {c · y | y ∈ K } then
µB(L,T )

({y ∈ K | c · y ≤ inf {c · y | y ∈ K }+ T })/µB(L,T )
(Rn) ≥ 1

4
and show

how to use the membership oracle for K to approximately sample from this dis-
tribution in an efficient manner.

Let xl be such that ∀y ∈ K, xl ≤ y and let xu be such that ∀y ∈ K, ∃z ∈ K
such that c · z ≤ c · y and z ≤ xu. Note that by the up-monotone property,
xu ∈ K. If xl and xu are not explicitly given we can take xl = 0 and xu such
that xui = (1/ci)

∑n
i=1 cix

f
i . Let KL = K ∩ {y | c · y ≥ L} (we will later further

restrict our attention to a “rectangle” that is roughly
{
x
∣∣∣ xl ≤ x ≤ xu

}
).

Definition 1 For any real L ≥ 0, T > 0 let “the tip” be the set x ∈ KL such that
c · x ≤ inf {c · y | y ∈ KL}+ T .

Let ψ(KL,xu)(x) denote the infimum of all real positive numbers λ such that
xu + x−xu

λ
∈ KL. This is the dilation of KL about xu needed to contain x and is

called the gauge function associated with KL. When the context is clear we will
suppress the subscripts and use ψ instead of ψ(KL,xu).
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F will be of the form

F (x) = e−αmax(ψ(KL,x
u)(x)−1,0)e−βc·x (2.1)

where β and α are positive reals to be determined later. We take F (x) as
the unnormalized density function for B(L,T ), a log-concave distribution on
{x ∈ Rn | x ≤ xu}. Note that e−βc·x is the bias (in favoring better objective val-
ues), and e−αmax(ψ(KL,x

u)(x)−1,0) is the function to damp this bias in regions that
are infeasible.

The selection of α and β is done in two stages: (1) we first find β such that
at least half of the probability mass in the body (according to the density B(L,T ))
is in “the tip”, and then (2) find α such that at least half the mass in the entire
rectangle is in the body.

2.4.1 Getting in the tip
For x in KL, the distribution F is a function of the c · x only (since ψ(x) ≤ 1).

Lemma 1 If L ≥ 0,T > 0 and β ≥ n
T

, we have∫
“the tip”

F ≥ (1/2)
∫
KL
F.

Proof: Let c∗ = inf {c · y | y ∈ KL}, z ∈ KL such that c · z = c∗ and A∗ be the
intersection of the hyperplane c · x = c∗ + T and K. Clearly, the convexity of KL

implies that
∫
KL∩{x:c·x≤c∗+T} F is not increased if we replace KL ∩ {x : c · x ≤

c∗+T} by the convex hull of z and A∗. Also, replacing KL∩{x : c ·x ≥ c∗+T}
by the truncated cone formed by intersecting {x : c ·x ≥ c∗+T}with the minimal
pointed cone with vertex z containing A∗ cannot decrease

∫
F over this set. So it

suffices to prove the lemma with KL equal to the infinite cone. Then the ratio of
integrals in the lemma is∫ c∗+T

c∗

(
λ−c∗
T

)n−1
area(A∗)e−βλ dλ∫∞

c∗

(
λ−c∗
T

)n−1
area(A∗)e−βλ dλ

=

∫ c∗+T
c∗ (λ− c∗)n−1 e−βλ dλ∫∞
c∗ (λ− c∗)n−1 e−βλ dλ

.

We change variables (and consult standard integral tables) to get:∫ T
0 λn−1e−βλ dλ∫∞
0 λn−1e−βλ dλ

= 1− e−βT
n−1∑
k=0

(βT )k

k!
.
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Figure 2.2: The body versus a cone.
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Figure 2.3: An example “thin” cone.

By picking β = n
T

the ratio is 1 − e−n∑n−1
k=0

nk

k!
, which is ≥ 1

2
for n ≥ 1, so

any
β ≥ n

T
, (2.2)

will do. 2

2.4.2 Staying in the body.
We now show that at least 1

2
of the mass is in the body KL, which would imply

that at least 1
4

of the mass of B(L,T ) is in the tip (the near optimal feasible region),
for a suitable choice of α.
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Let ∂KL be the set of y in the boundary of KL. For any ζ > 0 all of KL can
be covered by a collection C of disjoint cones such that for each cone r ∈ C, we
have ‖x− y‖2 ≤ ζ for x, y ∈ r ∩ ∂KL.

Now, if less than half of the mass according to B(L,T ) is in KL then there must
be a cone r ∈ C such that less than half the mass according to B(L,T ) restricted to
r is in r ∩KL. By the arbitrary nature of ζ we see the same must hold for some
“infinitely” thin cone. Chose such a cone and let y be the point at which the cone
intersects ∂K and set λ0 = ‖xu − y‖2.

Lemma 2 Suppose

α ≥ max
(
3β(c · xu − L) + 3n− 5, n(e2 + 1) + 1

)
(2.3)

Then the mass of any infinitesimal cone outside ofKL can be shown to be no more
than the mass of the same cone insideKL , thus yielding a ratio of feasible to total
of at least 1

2
.

Proof: For the proof of this lemma only, it will be convenient to multiply
masses by eβc·x

u; so for any set S, we mean by the mass of S, the quantity
eβc·x

u ∫
S F . The mass of the cone outside KL is given by:∫ ∞

λ0

λn−1e
β(c·xu−c·y) λ

λ0
−α( λ

λ0
−1)

dλ

= λn0

∫ ∞
1

tn−1eβ(c·xu−c·y)t−α(t−1)
d t

≤ λn0

∫ ∞
1

e(t−1)(n−1)eβ(c·xu−c·y)t−α(t−1)
d t

= λn0e
β(c·xu−c·y)/(α− β(c · xu − c · y)− (n− 1)).

For the mass of the ray inside KL we will break into two cases depending if
β(c · xu − c · y) is ≥ 2 or not. The mass of the ray inside KL is at least∫ λ0

0
λn−1e

β λ
λ0

(c·xu−c·y)
dλ

= λn0

∫ 1

0
tn−1eβt(c·x

u−c·y)
d t.

We now consider the two cases.

Case 1: β(c · xu − c · y) ≥ 2: An integration by parts gives the mass of the ray
inside KL equals
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λn0
β(c · xu − c · y)

(eβ(c·xu−c·y) − (n− 1)
∫ 1

0
tn−2eβt(c·x

u−c·y)
d t)

≥ λn0
β(c · xu − c · y)

(eβ(c·xu−c·y) − (n− 1)
∫ 1

0
e(t−1)(n−2)eβt(c·x

u−c·y)
d t)

≥ λn0e
β(c·xu−c·y)

β(c · xu − c · y)
(1− (n− 1)

β(c · xu − c · y) + n− 2
).

The ratio of mass inside KL to outside is at least

β(c · xu − c · y)− 1

β(c · xu − c · y) + n− 2

α− β(c · xu − c · y)− n+ 1

β(c · xu − c · y)
.

Since β(c · xu− c · y) ≥ 2 and α ≥ 3β(c · xu− c · y) + 3n− 5, the ratio is at least
1.

Case 2: β(c · xu − c · y) < 2: The mass of the ray inside KL is at least

λn0

∫ 1

0
tn−1

d tmin
(
1, eβ(c·xu−c·y)

)
yielding a ratio of

α− β(c · xu − c · y)− (n− 1) min
(
1, eβ(c·xu−c·y)

)
neβ(c·xu−c·y)

which, by our assumption on β, is at least

α− 2− (n− 1)

ne2

and since α ≥ n(e2 + 1) + 1 this is at least 1.

2

Summarizing, we have the following:

Theorem 2 For any L ≥ 0, T > 0 and F as in (2.1) with α, β satisfying

β ≥ n

T

α ≥ max
(
3β(c · xu − L) + 3n− 5, n(e2 + 1) + 1

)
then ∫

“the tip”
F ≥ (1/4)

∫
Rn

F.
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2.5 Sampling Procedure.
We now show how to approximately sample according to F (= B(L,T )). First, we
discretize the rectangle xl ≤ x ≤ xu. Next, we find an approximation for F in
regions not inKL. Third, we devise the transition matrix of a Markov chain which
realizes the desired random walk.

LetEi denote the unit vector directed in the ith coordinate direction. LetCδ(p)
denote the cube of side 2δ centered at p.

We will divide the rectangle xl ≤ x ≤ xu into small cubes of side 2δ where δ
will be specified later.

U
def
=

{
x ∈ Rn

∣∣∣∣∣ x− xf2δ
∈ Zn , Cδ(x) ∩

{
y ∈ Rn

∣∣∣ xl ≤ y ≤ xu
}
6= ∅

}
(2.4)

J
def
=

⋃
x∈U

Cδ(x) (2.5)

We will take a random walk on the graph whose vertices are the set U of centers
of cubes. Also, notice that even though there may be x ∈ U such that x 6≥ xl we
do have x + δ~1 ≥ xl for all x ∈ U . It is important to notice that the l∞ diameter
of J is no more that

∥∥∥xu − xl∥∥∥
∞

+ 4δ.
Many of the lemmas require that δ not be too large with respect to xu, xf , α

and β. To formalize this we will can δ “fine” if we have

δ ≤ min(
mini(x

u
i − x

f
i )

7α
,

1

7
√
nβci

), (2.6)

and we will often invoke the following result.

Proposition 1 If δ is “fine” and α, β meet the conditions of Theorem 2, then
xui −x

f
i

δ
≥ 7((e2 + 1)n+ 1) for all i.

2.5.1 Discretization and Approximate Sampling using Mem-
bership Oracle.

Errors due to two sources need to be analyzed here. One source of error is
because we discretize the region, and approximate the integral of F (x) over a
small rectangle by F (p)∗(volume of the rectangle), where p is the center of the
rectangle. The second source of error is in computing the gauge function for
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points outside the feasible region. This is because in practice we may only be
able to calculate F̂ (p), an approximation for F (p) (using the membership oracle
and bisection methods).

In this section (and in section 2.6) we will need for every p ∈ U that the
integral of F over any rectangle C centered at p and approximately contained in
Cδ(p) is well approximated by F (p)V ol(C).1

More precisely: For every p ∈ J we need to determine a lower bound on ρ
such that for some continuous monotone decreasing function ξ such that ξ(0) = 0
and all η ≥ 0 in some open neighborhood of 0: if C is any rectangular region with
center p contained in Cδ+η(p) ∩ J then

ρ(1−o(1))

(
1

V ol(C)

∫
C
F

)
≤ F (p) ≤ (ρ(1−o(1)))−1

(
1

V ol(C)

∫
C
F

)
. (2.7)

We will also need a lower bound on σ such that

σF (x) ≤ F (x+ λEi) (2.8)

for all x ∈ K, i ∈ {1 · · ·n} and all |λ| ≤ 2δ.
The lemma below summarizes the errors induced here. The proof is in sec-

tion 2.8.

Lemma 3 (2.7) and (2.8) hold with

σ ≥ e−2αδ/(mini(x
u
i −x

f
i ))e−2βδ‖c‖∞ (2.9)

ρ ≥ e−αδ/(mini(x
u
i −x

f
i ))

1 +
√

2πβδ ‖c‖2 erf
(
βδ‖c‖2√

2

)
eβ

2δ2‖c‖22/2
(2.10)

Let F̂ (x) be an approximation for F (x) calculated using only x and the mem-
bership oracle. In the feasible region, F̂ = F . In the infeasible region, F̂ may not
equal F because the dilation cannot be computed exactly. Note that for our analy-
sis this must be a deterministic approximation and not one obtained by sampling;
to be clear, we always calculate the same value for F̂ (x). This is calculated to a
relative accuracy of 1± 1

11
(i.e. 10

11
F (x) ≤ F̂ (x) ≤ 12

11
F (x).)

To calculate F̂ (x) to a relative accuracy of 1/11, it is sufficient to calculate the
gauge function to an absolute error of ± ln(12/11)

α
. To achieve this, it is sufficient

1The approximate containment, characterized by a parameter η, is technical point used only to
facilitate the proof of Lemma 4.
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to calculate the distance of the point in K on the line segment from x to xu that

is farthest from xu to an absolute accuracy of ln(12/11)(mini(x
u
i −x

f
i ))2

2‖xu−xf‖
2
α

. This can be

done very quickly by bisection search using our membership oracle.

2.5.2 The Markov Chain.
For each x ∈ U let N(x) be the “neighborhood” of x which is the set of all
vertices in U that differ from x in exactly one coordinate by ±2δ. The transition
probabilities P (x, y) will be:

P (x, y) =


1

2n
min(1, F̂ (y)

F̂ (x)
) y ∈ N(x)

1−∑z∈N(x) P (x, z) x = y
0 y 6∈ N(x)

(2.11)

where F̂ is a deterministic estimate for F . It is easy to see that P (x, y) induces
a time reversible irreducible aperiodic Markov chain with steady state probabil-
ities π(·) proportional to F̂ (·). We will show, in the next section, that after a
sufficient number of steps, we are fairly close to the steady state. Let π be the
unique steady state distribution for our chain (approximately B(L,T )). But first
we show that in the steady state there is a reasonable chance of observing states
corresponding to cubes covering the near optimal feasible portions of KL.

Theorem 3 Let π(·) be the steady state probabilities of the above Markov chain,
then if α, β satisfy the conditions of Theorem 2 and δ is “fine” and “the tip” is
contained in J then ∑

x∈U,Cδ(x)∩“the tip”6=∅
π(x) ≥ 1

6
.

Proof: Accounting for the errors due to discretization and in gauge function com-
putation, π(x) (= DF̂ (x)) satisfies

D(1− 1

11
)ρ

(
1

(2δ)n

∫
Cδ(x)

F

)
≤ π(x) ≤ D(1 +

1

11
)ρ−1

(
1

(2δ)n

∫
Cδ(x)

F

)
.

(2.12)
where D =

(∑
x∈U F̂

)−1
.
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Now, since the “tip” probability is at least 1
4

(by construction of F ), we have
the steady state probability of the cubes covering the tip is:

∑
x∈U,Cδ(x)∩“the tip”6=∅

π(x) ≥
1× (1− 1

11
)ρ

3× (1 + 1
11

)ρ−1 + 1× (1− 1
11

)ρ
.

δ is fine, so:
αδ

mini(xui − x
f
i )
≤ 1

7
(2.13)

and
βδ ‖c‖2 ≤

1

7
, (2.14)

and the theorem follows from inequality (2.10). 2

2.6 Spectral Gap of the Markov Chain.
In this section, we determine how many steps are necessary for the Markov chain
to “mix”. We need to find a relationship between the number of steps walked and
how close we are to the steady state. For this we need a central result of Sinclair
and Jerrum [47]. We also need several well-know facts that are collected in [19].
Let X be the set of states in our Markov chain. For x, y ∈ X , let P t(x, y) be
the probability that starting in state x we are in state y after t steps. As before,
let π be the unique steady state distribution for our chain (approximately B(L,T )).
Recall that P (x, y) induces a time reversible irreducible aperiodic Markov chain;
however, it is not strongly aperiodic [47]. This is because we do not insist that we
have P (x, x) ≥ 1

2
for all x. Because of this, we not only need an upper bound

for the second largest eigenvalue but also need a lower bound on the smallest
eigenvalue [19].

We will use Proposition 3 from [19] which says:

∑
y∈X
|P t(x, y)− π(y)| ≤

√√√√1− π(x)

π(x)
(χ∗)t

.
where, χ∗ = max(χ1, |χm|), where χ1 is the second largest eigenvalue and χm

is the smallest eigenvalue of P , the matrix of transition probabilities.
We find an upper bound on χ1 by appealing to a result of Sinclair and Jerrum’s

[47], which is quoted also as Proposition 6 of [19], namely, χ1 ≤ 1 − φ̂2

2
, where
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φ̂ is a lower bound on the “conductance” (defined in section 2.6.1) of the Markov
chain. We find a lower bound on the conductance in section 2.6.1 below. A lower
bound on χm is obtained by appealing to Proposition 2 of [19], described in detail
in section 2.6.2.

We also prove that (see sections 2.6.1-2.6.2) |χm| ≤ 1− φ̂2

2
. Thus, we have:

∑
y∈X
|P t(x, y)− π(y)| ≤ 1√

π(x)
(1− φ̂2

2
)t.

What we wish to do is find t so that
∑
y∈X |P t(x, y) − π(y)| is under 1/12.

Recall that by Theorem 3, the states of our Markov chain corresponding to cubes
that cover the “tip” have mass at least 1/6. Thus, we will have a chance of at least
1/6 − 1/12 = 1/12 that a random walk of t steps will end in one of the states
corresponding to a cube covering the tip (i.e. close to the optimum). For this, it
suffices to have

t ≥ ln


√
π(x)

12

 / ln

(
1− φ̂2

2

)
≥ ln

 12√
π(x)

 /( φ̂2

2

)
=

2 ln(12)− ln(π(x))

φ̂2
.

(2.15)
We now wish to prove a lower bound on π(xf ), our starting point, so that we

can apply the above inequality.
We assume that the walk is started deterministicly at xf . Since we know that

at least half of the mass ofB(L,T ) is in the body and the highest possible stationary
probability of a cube intersectingKL is at most eβ(c·(xf+2δ~1)−L)π(xf ) and there are

at most
∏n
i=1

⌈
xui −x

l
i

2δ
+ 1

⌉
states in KL (or even U ), we know

ρ10/11

ρ−112/11

1

2
≤ π(xf )eβ(c·(xf+2δ~1)−L)

n∏
i=1

⌈
xui − xli

2δ
+ 1

⌉

which yields

π(xf ) ≥ ρ25eβ(L−c·(xf+2δ~1))

12
∏n
i=1

⌈
xui −x

l
i

2δ
+ 1

⌉
but we will just use the easier form:

5ρ2eβ(L−c·(xf+2δ~1))

12
⌈‖xu−xl‖∞

2δ
+ 1

⌉n . (2.16)
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Plugging in, we get

Theorem 4 If the conditions of Theorem 3 are met then running the above
Markov chain for at least

2 ln(12) + ln
(

12
5ρ2

)
+ β(c · (xf + 2δ~1)− L) + n ln

(⌈‖xu−xl‖∞
2δ

+ 1
⌉)

φ̂2
(2.17)

steps is sufficient to ensure with probability at least 1
12

, the chain will stop at a
state x such that x + δ~1 is feasible and within cost T + 2δ ‖c‖1 of the optimal
point.

Although at the end of Section 2.4, we had shown that the steady state
probability of being in the tip is at least 1

6
, now we only guarantee the probability

that the sample is in the tip at the end of t steps is (at least) 1
12

. Thus, the three
sources of errors–discretization, approximation of the gauge function, walking
for t steps–reduce the tip probability from 1

4
to 1

12
.

2.6.1 Conductance.
Take aribtrary V ⊆ U and V̄ = U \ V . We define the conductance of V by

φV =

∑
x∈V,y∈V̄ ∩N(x) π(x)P (x, y)

min(π(V ), π(V̄ ))
=

∑
x∈V,y∈V̄ ∩N(x) min(F̂ (x), F̂ (y))

2nmin(F̂ (V ), F̂ (V̄ ))
. (2.18)

The conductance of the chain defined by

φ = min
V⊆U

φV . (2.19)

We use an “isoperimetric inequality” to find a lower bound for φ. An isoperi-
metric inequality was proved in [23]; a simpler proof of a stronger inequality was
given in [40]. The inequality was generalized to the case of log-concave functions
in [5]. We use here a version of this from [21]. If dist(x, y) = ||x − y|| where
|| · || is an arbitrary norm on Rn and diam(K) = maxx,y∈K dist(x, y) we have the
following theorem from [21]:

Theorem 5 Let J ⊆ Rn be a convex body and F a log-concave function defined
on int J and µ the induced measure. Let S1, S2 ⊆ J , and t ≤ dist(S1, S2) and
d ≥ diam(J). If B = J \ (S1 ∪ S2), then

min(µ(S1), µ(S2)) ≤ 1

2
(d/t)µ(B). (2.20)
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We will use dist(x, y) = ‖x− y‖∞.

Lemma 4 If δ is fine then φ ≥ δ

3n‖xu−xl‖∞
= φ̂ (say).

Proof: For any V ⊆ U and V̄ = U \ V , and

Vδ =
⋃
x∈V

Cδ(x)

V̄δ =
⋃
x∈V̄

Cδ(x)

Let η be a small positive real that will tend to zero. Let Bδ be the η/2 neighbor-
hood of Vδ ∩ V̄δ and Bδ(x, y) be the η/2 neighborhood of Cδ(x) ∩ Cδ(y). Let
S1, S2 and B be Vδ \Bδ, V̄δ \Bδ and Bδ ∩ J respectively.

From inequalities (2.7), (2.8), (2.9), (2.10) and (2.12), it is clear that

∑
x∈V,y∈V̄ ∩N(x)

min(F̂ (x), F̂ (y)) ≥ 10

11

∑
x∈V,y∈V̄ ∩N(x)

min(F (x), F (y))

≥ 10

11
σ

∑
x∈V,y∈V̄ ∩N(x)

F
(
x+ y

2

)

≥ 10

11
σ

∑
x∈V,y∈V̄ ∩N(x)

ρ
1

η(2δ + η)n−1

∫
Bδ(x,y)

F

≥ 10

11

σρ

η(2δ + η)n−1

∫
Bδ

F

≥ 10

11

σρ

η(2δ + η)n−1

∫
B
F

similarly min(F̂ (V ), F̂ (V̄ )) ≤ 12

11

1

σρ(2δ)n
min

(∫
Vδ

F,
∫
V̄δ

F
)

≤ 12

11

1

σρ(2δ − η)n
min

(∫
S1

F,
∫
S2

F
)

From the isoperimetric inequality,∫
B F

min(
∫
S1
F,
∫
S2
F )
≥ 2η

‖xu − xl‖∞ + 4δ
.
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Combining this with the inequalities above and taking the limit η → 0 we get:

φ ≥
210

11
σ2ρ2δ

12
11
n(‖xu − xl‖∞ + 4δ)

. (2.21)

Since δ is fine (from inequalities (2.10),(2.9))

φ ≥ δ

3n ‖xu − xl‖∞
= φ̂. (2.22)

2

2.6.2 Comparison of χ1 and |χm|
Here we find a lower bound for χm, by the canonical odd path argument outlined
in Proposition 2 of [19].

Let
∆ =

δ

8n ‖xu − xl‖∞
. (2.23)

For each state x let ωx be the smallest non-negative integer such that P (x +
2ωxδE

1, x + 2ωxδE
1) ≥ ∆ (this is always possible since P (a, a) ≥ 1

2n
≥ ∆

on the border of our bounding region). Let σx be the 2ωx + 1 step path of from x
to x given by:

x 7→ x+ 2δE1 7→ x+ 4δE1 7→ · · ·

“self loop”︷ ︸︸ ︷
x+ 2ωxδE

1 7→ x+ 2ωxδE
1 7→ · · ·x+ 4δE1 7→ x+ 2δE1 7→ x

We will call σx “the canonical odd path for x”.
Proposition 6 of [19] states for any selection of canonical odd paths we have

χm ≥ −1 + 2
ι
, where

ι
def
= max

(a,b)

∑
σx3(a,b)

‖σx‖P π(x), (2.24)

where ‖σx‖P
def
=

∑
(a,b)∈σx

1

π(a)P (a, b)
. (2.25)

To prove the bound for χ∗, we will show that |χm| is less than the upper bound
for χ1. From the discussion above, it is sufficient to show the following.

Lemma 5 ι ≤ 4
φ̂2
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Proof: By our choice of paths, we have for any i ≤ ωx − 1:

1
2n
−∆ ≤ P (x+ i2δE1, x+ (i+ 1)2δE1) ≤ 1

2n

P (x+ (i+ 1)2δE1, x+ i2δE1) ≤ 1
2n

and by time reversibility

π(x+(i+1)2δE1) =
P (x+ i2δE1, x+ (i+ 1)2δE1)

P (x+ (i+ 1)2δE1, x+ i2δE1)
π(x+i2δE1) ≥

1
2n
−∆
1

2n

π(x+i2δE1).

For any x we have,

‖σx‖P ≤ 2
ωx∑
i=1

1

π(x)(1− 2∆n)i( 1
2n
−∆)

+
1

π(x)(1− 2∆n)ωx∆

≤ 2

⌈
xu1−x

l
1

2δ
+1

⌉
∑
i=1

1

π(x)(1− 2∆n)i( 1
2n
−∆)

+
1

π(x)∆(1− 2∆n)

⌈
xu
1
−xl

1
2δ

+1

⌉

≤ 2

⌈
xu1 − xl1

2δ
+ 1

⌉
2n

π(x)
(

1−
⌈
xu1−x

l
1

2δ
+ 2

⌉
2∆n

) +
1

π(x)∆
(

1−
⌈
xu1−x

l
1

2δ
+ 1

⌉
2∆n

) .
Using Proposition 1 it is easy to show that⌈

xu1 − xl1
2δ

+ 2

⌉
2∆n ≤ 1

3
.

Continuing,

‖σx‖P ≤
⌈
xu1 − xl1

2δ
+ 1

⌉
6n

π(x)
+

3

2π(x)∆
.

Because each edge can be used by at most
⌈
xu1−x

l
1

2δ
+ 1

⌉
canonical odd paths,

we have

ι ≤
⌈
xu1 − xl1

2δ
+ 1

⌉(⌈
xu1 − xl1

2δ
+ 1

⌉
6n+

3

2∆

)
. (2.26)

The result now follows from Lemma 4, inequality (2.26) and Proposition 1. 2
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2.7 Description and Analysis of the Algorithm.
Suppose we are given a feasible point xf , a relative accuracy goal (ε) and a
desired upper bound on the probability that the algorithm fails (κ). Let ν be the
ratio of c · xf to c · xopt. We assume that without loss of generality, the problem
has been rescaled so ci = 1 for all i (xi → cixi, ci → ci

ci
= 1).

2.7.1 In the worst case
Here, we assume that n ≥ 2 and ε ≤ 1. We present AlgorithmA.

The analysis of AlgorithmA is fairly straight forward.

• It is easy to see that xu such that xui =
∑
j x

f
j must dominate any optimal

point.

• Each time we draw a sample according to Theorem (4) we have at least a
chance of 1

12
that it is feasible and within a cost of T + 2nδ of the optimum.

We have picked T and δ such that T + 2nδ <

∑
j
xfj−L
2

.

• When the repeat loop terminates either

–
∑
i x

best
i ≤

∑
j
xfj+L

2
, or

– enough samples have been drawn such that with confidence at least

(1−κ)

1

dlog2( 7
ε )e+1 one of them was feasible and within distance T+2nδ

of the optimum.

Either way, the distance from the new xf to the new L is no more than half
of the old distance.

• Thus, the outer while loop will run no more than dlog2

(
ν
ε

)
e times.

• Furthermore, we see the first time the algorithm alters the lower bound (it

must establish a lower bound to halt), we have L ≥
∑

i
xfi

2
− T − 2nδ ≥

1
7

∑
i x

f
i .

– Therefore, the outer while loop will cycle no more than
⌈
log2

(
7
ε

)⌉
more times.
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Input: xf , ε, κ, c and a membership oracle for K.
rescale problem so c = ~1
xl ← 0 (point-wise lower bound)
L← 0 (probalistic cost lower bound)
xbest ← xf (the best feasible solution observed)
while

∑
i x

f
i − L > εL

xui ← 2
∑
j x

f
j , i = 1 · · ·n (point-wise upper bound)

T ←
∑

j
xfj−L
3

(1
3

of the current gap)
β ← n

T
(objective function “bias”)

α← 7n2
∑

i
xfi

T
(gauge function gain)

δ ← T
49n2 (step size)

repeat
⌈
log 12

11

(dlog2( 7
ε )e+1

κ

)⌉
times or until

∑
i x

best
i ≤

∑
j
xfj+L

2

run the random walk of section 2.5 with the above parameters for the number of
steps prescribed in Theorem 4, let x be the stopping point of the walk.

if x+ δ~1 feasible and
∑
i(xi + δ) <

∑
i x

best
i

then xbest ← x+ δ~1
endrepeat

if
∑
i x

best
i >

∑
j
xfj+L

2

then L← ∑
i x

best
i − T − 2nδ

xf ← xbest

endwhile
return xf

Figure 2.4: AlgorithmA.
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– Thus the lower bound can be altered at most
⌈
log2

(
7
ε

)⌉
+ 1 times.

– Since each lower bound alteration is correct with chance at least (1−

κ)

1

dlog2( 7
ε )e+1 we see that they all are correct with odds at least 1− κ.

Thus the algorithm fails with chance less than κ.
We must check that α, β and δ were picked correctly.

• β clearly satisfies inequality (2.2).

• Assuming that n ≥ 2, we see that α satisfies inequality (2.3).

• It is easy to see that inequality (2.6) is satisfied.

• Invoking Lemma (4), φ̂ ≥ ε
6174n3 .

• So t =
(6174)2n6

(
7+3.2n+n ln

(
1173n2

2ε
+2

))
ε2

steps are enough to draw a sample.

Thus, each sample can be drawn in O
(
n7 log(nε )

ε2

)
steps.

• Each step requires at most O
(
log

(
n
ε

))
membership queries to compute the

gauge function.

So the total number of membership queries is

O

n
7
(
log

(
n
ε

))2
log

(
log( 1

ε )
κ

)
log

(
ν
ε

)
ε2

 , (2.27)

which, if we ignore lesser log factors, can be thought of as

O∼
(
n7 log(ν) log( 1

κ)
ε2

)
.

It is quite natural to wonder if an algorithm with this poor a runtime can
possibly be an improvement on the ellipsoid algorithm. In [33] the version of
the Yudin- Nemirovskiiǐ separation from membership algorithm requires O∼(n6)
membership tests to build a single approximate separator and then the shallow cut
ellipsoid algorithm may need O∼(n4) separators to optimize. It must be empha-
sized that this reference in only concerned with proving the problem is in P , so it
is unlikely that O∼(n10) membership queries is the best known. Finally it should
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be emphasized that the ellipsoid algorithm doesn’t have a super logarithmic de-
pendence on ε.

Remark: 1 With a new result of Frieze, Kannan and Polson that the algorithm
outlined here can have it’s dependence on n brought down to n6 by performing the
sampling walk in a bounding sphere instead of a bounding box and estimating χ∗

without introducing the idea of conductance. Other methods such as using newer
chains available from Lovasz and Simonovits, or Kannan, Lovasz and Simonovits
allow running times of O(n5) and possibly O(n3). None of these improvements
are capable of replacing the dependence on ε with one on log(ε)

2.7.2 With advantageous bounds.
Here we analyze the situation where good bounds xl, L and xu are known and
attempt to lower the dependence of the runtime on n. To do this meaningfully, all
dot products (and norms other than infinity) must be removed from the expressions
as they hide n’s. In this subsection, we work out a bound on run time that explicitly
shows all of the powers of n.

We still assume that the problem has been rescaled so ci = 1 for all i (xi →
cixi, ci → ci

ci
= 1) and that

mini(x
u
i − x

f
i )

‖xu‖∞ −mini xli
≥ 1

2
(2.28)

and min
i

(xui ) + min
i

(xli) ≥ 2
∥∥∥xf∥∥∥

∞
. (2.29)

This is easy to ensure by replacing xui with
∥∥∥xf∥∥∥

∞
+‖xu‖∞ and has the geometric

interpretation of making the problem “well rounded”.

We notice that if ε > ‖x
f‖∞

mini xli
− 1 then xf is already a solution of the desired

accuracy. This and inequality (2.29) imply

‖xu‖∞ −mini x
l
i

εmini xli
≥ 2. (2.30)

Rather than the adaptive approach, first consider a sampling algorithm that
comes within ε of optimal in one long walk:

• We set L =
∥∥∥xl∥∥∥

1
and T = ε

∥∥∥xl∥∥∥
1
.

41



• We will chose β to be at least 11
10

n
T

instead of as stated in inequality (2.2).
The 11

10
is required to guarantee that we get within T of the optimum instead

of the T + 2δ ‖c‖1 we could expect because of discretization. To guarantee
this, we must show that ε

10
mini x

l
i ≥ 2nδ.

– So we set
β =

11

10εmini xli
(2.31)

and α =
5n(‖xu‖∞ −mini x

l
i)

εmini xli
. (2.32)

– By inequality (2.30), this satisfies inequality (2.3).

– Now setting

δ =
εmini x

l
i

70n
(2.33)

satisfies inequality (2.6), by inequality (2.28).

– Clearly, we have 2nδ ≤ 1
10
εmini x

l
i.

So the 2δ ‖c‖1 factor has been dealt with.

Now, by Lemma (4) and Theorem (4), we have

φ̂ =
εmini x

l
i

210n2 ‖xu − xl‖∞
(2.34)

t =


7 +

11n
∥∥∥xf − xl∥∥∥

∞
10εmini xli

+ n ln


70n

∥∥∥xu − xl∥∥∥
∞

2εmini xli
+ 1


210n2

∥∥∥xu − xl∥∥∥
∞

εmini xli

2 .(2.35)

Which, if we take the middle term of the sum to be dominant, is

O

n5


∥∥∥xu − xl∥∥∥

∞
εmini xli

3 (2.36)

steps.
We will call this algorithm AlgorithmB. AlgorithmB can then be repeated⌈

ln(κ)
ln(11/12)

⌉
times to amplify the chance of success to at least 1− κ.
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The dependence on ‖x
u−xl‖∞
εmini xli

can be improved by designing a new algorithm
(AlgorithmC) that runs AlgorithmB in stages like we did for AlgorithmA.

The analysis is as before and the run time comes out to

O

n5


∥∥∥xu − xl∥∥∥

∞
εmini xli

2ln

n
∥∥∥xu − xl∥∥∥

∞
εmini xli

2

ln(
1

κ
)

 (2.37)

membership queries.

2.8 Errors Due to Discretization
For every p ∈ J we need to determine a lower bound on ρ such that for some
continuous monotone decreasing function ξ such that ξ(0) = 0 and all η ≥ 0
in some open neighborhood of 0: if C is any rectangular region with center p
contained in Cδ+η(p) ∩ J then

ρ(1− ξ(η))

(
1

V ol(C)

∫
C
F

)
≤ F (p) ≤ (ρ(1− ξ(η)))−1

(
1

V ol(C)

∫
C
F

)
.

(2.38)
We will also need a lower bound on σ such that

σF (x) ≤ F (x+ λEi) (2.39)

for all x ∈ K, i ∈ {1 · · ·n} and all |λ| ≤ 2δ.
For vectors a and b let ab be the vector (ab)i = aibi. To facilitate the

analysis we break F into its two constituent parts f and g where f(x) =
e−α(max(ψ(KL,x

u)(x)−1,0)), g(x) = e−βc·x, and F (x) = f(x)g(x).
σ is easy to deal with when we apply the well known fact that a gauge function

based on K can fall no faster than one based on a convex subset of K (containing
xu). To be precise we apply Corollary 52 from [5] to get:

|ψ(KL,xu)(x)− ψ(KL,xu)(y)| ≤ ‖x− y‖∞
mini(xui − x

f
i )

which implies

e−α(δ+η)/(mini(x
u
i −x

f
i ))f(x) ≤ f(z) ∀z ∈ C (2.40)
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and inequality 2.39 is satisfied with

σ = e−2αδ/(mini(x
u
i −x

f
i ))e−2βδ‖c‖∞ . (2.41)

To get a lower bound on ρ we use the simple rule that for f, g ≥ 0

min
x∈C

(f(x))
∫
C
g ≤

∫
C
fg ≤ max

x∈C
(f)

∫
C
g

and use inequality 2.40 to get the point-wise bounds on f . All that remains is to
derive a lower bound ρ′ such that

ρ′
(

1

V ol(C)

∫
C
g

)
≤ g(p) ≤ ρ′

−1

(
1

V ol(C)

∫
C
g

)
. (2.42)

We note that g is of the form g(x) = h(c · x) for some non-negative convex
function h in the region we are interested in and since C is symmetric about p we
know that (from Jensen’s inequality)

g(p) ≤ 1

V ol(C)

∫
C
g,

and any ρ′−1 ≤ 1 satisfies the right side of inequality 2.42.
To get the left side of inequality 2.42 we define

Ξi
def
= max

{
λ ∈ R

∣∣∣ p+ λEi ∈ C
}

D
def
= {x ∈ Rn | |xi − cipi| ≤ ciΞi ∀i}

and change variables to get:

1∏n
i=1 2ciΞi

∫
D
g.

Let µ(λ) be the measure of the set{
x ∈ D

∣∣∣ x ·~1− p · c ≥ λ
}

It is easy to see µ is differentiable and −µ′(λ) ≥ 0 for λ ∈ [0, c · Ξ]. We return to
our integral (using the estimate µ(λ)− µ(λ+ dλ) = −µ′(λ)dλ):

=
1∏n

i=1 2ciΞi

∫ c·Ξ

0
−µ′(λ)

(
e−β(c·p+λ) + e−β(c·p−λ)

)
dλ

44



= g(p)
−2∏n

i=1 2ciΞi

∫ c·Ξ

0
cosh(βλ)µ′(λ) dλ

= g(p)
−2∏n

i=1 2ciΞi

(
cosh(βλ)µ(λ)|λ=c·Ξ

λ=0 − β
∫ c·Ξ

0
sinh(βλ)µ(λ) dλ

)

= g(p)
−2∏n

i=1 2ciΞi

(
0−

∏n
i=1 2ciΞi

2
− β

∫ c·Ξ

0
sinh(βλ)µ(λ) dλ

)

= g(p)

(
1 +

2β∏n
i=1 2ciΞi

∫ c·Ξ

0
sinh(λ)µ(λ) dλ

)

By Theorem 2 of [36], we have µ(λ) ≤ (
∏n
i=1 2ciΞi) e

−λ2/(2‖cΞ‖22). So continuing
we have:

1

V ol(C)

∫
C
g ≤ g(p)

(
1 + 2β

∫ c·Ξ

0
sinh(λ)e−λ

2/(2‖cΞ‖22)
dλ

)

We need an upper bound for

2β
∫ c·Ξ

0
sinh(λ)e−λ

2/(2‖cΞ‖22)
dλ

which comes out to (by standard integral tables)

β ‖cΞ‖2

√
π

2
eβ

2‖cΞ‖22/2
(

2 erf

(
β ‖cΞ‖2√

2

)
+ erf

(
c · Ξ− β ‖cΞ‖2

2√
2 ‖cΞ‖2

)
− erf

(
c · Ξ + β ‖cΞ‖2

2√
2 ‖cΞ‖2

))

≤
√

2πβ ‖cΞ‖2 erf

(
β ‖cΞ‖2√

2

)
eβ

2‖cΞ‖22/2

≤
√

2πβ(δ +
√
nη) ‖c‖2 erf

(
β(δ +

√
nη) ‖c‖2√
2

)
eβ

2(δ+
√
nη)2‖c‖22/2

which for sufficiently small η > 0 (and η = 0) is

≤
√

2πβδ ‖c‖2 erf

(
βδ ‖c‖2√

2

)
eβ

2δ2‖c‖22/2(1 + o(1))

combining this with our point-wise bound on f we get

ρ ≥ e−αδ/(mini(x
u
i −x

f
i ))

1 +
√

2πβδ ‖c‖2 erf
(
βδ‖c‖2√

2

)
eβ

2δ2‖c‖22/2
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2.9 Relation to Simulated Annealing
The above algorithm has some similarities with simulated annealing.[45] In sim-
ulated annealing optimization is performed by moving from feasible state to fea-
sible state by choosing moves from small neighborhoods. The moves are selected
and rejected in a manner almost identical to the Metropolis filter as applied to our
function. The fact that our algorithm steps through infeasible states is not very im-
portant. This it is an artifice introduced to improve the mixing rate of the Markov
chain by removing small sets from consideration. The constants in any simulated
annealing problem can also be hidden in the objective function (similar to La-
grangian relaxation). The second point of similarity is that where our algorithm
moves its upper bound (by finding a sufficiently better new best point) or lower
bound (by building a probalistic proof) is exactly like altering the “temperature”
parameter in the Boltzmann equation that selects moves in simulated annealing.
In fact, though we have not found any advantage to it, we could redesign our algo-
rithm to alter β and γ continuously to imitate simulated annealing. Unfortunately
this would mean that the chain is no longer stationary (as the chain’s transition be-
havior would change over time). One could make crude arguments that the chains
behavior over any time period would be no worse than if it had been run with
the parameters at the end of the time period. Then one could appeal to a Markov
chain central limit theorem to show that the “tip” would still be visited with high
frequency.

It is a very interesting open problem to try and extend the theory of rapidly
mixing Markov chains to the stochastic processes like simulated annealing.

2.10 Small Sets
The treatment of rapidly mixing Markov chains given here completely avoided the
“small set” issue by allowing the chain to move to infeasible states and then ap-
plying a punishment factor to return the chain to the feasible region. This had the
disadvantage of introducing a hard to characterize gauge style function depend-
ing on α. This forced us to make δ very small so we could apply crude point-wise
bounds on this gauge function, whereas for the bias function we were able to make
more sophisticated estimates of variation over regions (via the Hoeffding inequal-
ity) that would have allowed δ to be a factor of

√
n larger and shaved a factor of n

off the running time of the Markov chain.
The small set problem is that if we have a Markov chain on a set of points cho-
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sen from a convex body that conductance is poor near the boundary of the body.
In fact if the chain uses only states that are such convex bodies it may not even
be connected. An example is K =

{
(x, y) ∈ R2

∣∣∣ y ≥ 0, y ≤ 3
2
x, y ≥ 3x− 3

}
.

Zn∩K = {(0, 0), (1, 0), (1, 1), (2, 3)}which isn’t connected by the King’s moves
that changes a single coordinate by ±1. We are certainly not going to be able to
get a strong conductance result for this chain as the set {(2, 3)} is inescapable.
There are a number of ways to deal with the above problem. The one we used is
to walk on a large region of Zn instead of Zn ∩K and try to force the chain into
K with a penalty function. This has the advantage of simplifying the structure of
the chain and the disadvantage of introducing a hard to analyze penalty function.

Lovasz and Simonovits [40] dealt with this problem by introducing a notion
called s-conductance. The s-conductance of a Markov chain is not the worst es-
cape probability of any set of states in the chain but the worst escape probability of
any large set of states in the chain. The authors then perform a fairly delicate anal-
ysis to show that analogues of the convergence theorems known for conductance
are true for s-conductance. Nothing comes for free so some care must be made
that the chain does not start in a small set. In addition to the improved mixing
rate of the Markov chain described in this paper this paper is significant because
it formalizes many of the geometric methods used in this field into well contained
lemmas (such as “localization”).

Frieze, Kannan and Polson [28] deal with the problem in a similar manner.
They use a strong minimax characterization of the eigenvalues of the linear op-
erator representing the Markov chain. In this characterization the convergence
rate of the Markov chain basically the gap between the eigenvalue 1 and the next
largest eigenvalue (the separation of eigenvalues from -1 is usually easy to show).
By the minimax characterization the second largest eigenvalue is the eigenvalue
corresponding the vector φ the maximizes the Rayleigh quotient φTPφ/φTφ sub-
ject to φTπ = 0 where π is the stationary distribution. It turns out that similar
convergence theorems can be proven for the vector that maximizes this quotient
subject to the additional restrictions that it places no mass in any of the states near
the boundary of K. The restrictions are easily expressed as linear relations and
lead to an analysis that has similar consequences to the s-conductance arguments.
Again the restricted result is weaker that the classical result and care must be taken
that one does not start near any of the bad states. The direct handling of eigenval-
ues and eigenvectors, without explicit mention of conductance, are likely to yield
many more results in the near future.

A last concept that is in development by Kannan, Lovasz and Simonovits
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is average local conductance. Local conductance, introduced by Lovasz and
Simonovits, is the chance that Xt 6= Xt+1 or that the chain makes a non-
trivial transition. Average local conductance is the expected value of P [Xt 6=
Xt+1|Xt is π distributed]. Most current analysis of Markov chains state how many
steps the chain must run for some property to hold. Average local conductance re-
sults are theorems of the form “after so many non-trivial transitions some property
holds.” These results are much more powerful as they not only allow one much
more freedom in trying to estimate how bad states affect a Markov chain (one can
show there are not many of them, or one is unlikely to visit them) but one also has
the option of proving nothing about average local conductance and running chains
until one observers empirically that the requisite number of non-trivial transitions
have been taken.

2.11 Stopping time.
Our actual implementation, while not practical for general use, allowed us to em-
pirically observe an expected behavior of the Markov chain. Since all our proofs
of stopping time must, to be correct, be pessimistic. The chain will improve its
“best” point much faster that the analysis indicates and it is worth the extra ef-
fort to continuously monitor the chain and restart it at a new best point when any
significant fraction of improvement is noticed in objective value. With this modifi-
cation the chain very quickly restricts to a small neighborhood of the true optimal
point and then only has to run to the theoretical stopping time one set of times: to
prove the lower bound. In practice almost all of the running time of this algorithm
is used in proving the final lower bound.

2.12 King’s move data structures.
Using the King’s move has a number of implementation advantages over using a
continuous move structure. First many fewer random bits are needed as we only
need log(n) coin flips to decide which direction to go and some constant number
of coin flips to decide whether to go or not (as we have restricted F to vary by no
more than a constant). We can also update our state in constant time (change one
entry in a vector). We have also found that membership inK and be checked faster
than is the case for more general moves. IfK is given bym linear inequalities then
by incrementally updating all of the linear relations we can check membership in
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O(m) time instead of O(mn).
We have tried building a membership oracle for the component commonality

problem by simulating the numerical integrations required to test membership
in K by using sums over historic data. K is defined as the set of x ∈ Rm

such that
∫
y∈Rn

, Ay≤x F (y) ≥ γ where F is the probability density function
for the month’s total orders. We approximate K with the non-convex body
Ks =

{
x ∈ Rm

∣∣∣ 1
s

∑s
i=1, Ayi≤x 1 ≥ γ

}
where y1, · · · , ys are points drawn from

Rn according to the density F . We are using the standard statistical trick of us-
ing the “empirical distribution” derived from previous observations to simulate
the true distribution. We know by central limit arguments that lims→∞Ks = K.
We, of course, have the problem that the empirical distribution is always atomic
and Ks is almost never convex. It was shown by Applegate and Kannan [5] that
small departures from true convexity do not overwhelm the Markov chain tech-
nique. Notice that by organizing multiple copies of y1, · · · , ys each copy sorted by
a different coordinate we can compute membership in Ks in time O(s) instead of
O(ms).

These savings are very important since the Markov chain we use the mem-
bership oracle every step and the membership oracle performs, by far, the most
expensive operation each step.
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Chapter 3

Contingency Tables: Exact and
Approximate Counting

3.1 Background.
Consider an m by n matrix of non-negative integers. This matrix, called a contin-
gency table is an important summary tool in statistics and arises in the following
manner. Consider a finite multi-set1 with elements (i, j) (a ∈ [1 · · ·m], b ∈
[1 · · ·n]). For each such (i, j) let πi,j denote the probability that an element
drawn out of the multi-set with uniform probability is equal to (i, j). If such a
multi-set represented a population of people that are identified only by hair color
(Black, Brunette, Red, Blonde) and eye color (Brown, Blue, Hazel, Green) then
πBlack,Green would be the probability that a person picked from this population
uniformly at random would have both black hair and green eyes. A possible ex-
periment would be to draw a multi-set sample, S, of T elements out of the original
multi-set (for simplicity assume we draw with replacement). We could then sum-
marize this experiment in an m by n matrix X where

Xi,j
def
= the number of occurrences of (i, j) in S. (3.1)

Define πi,∗ =
∑n
j=1 πi,j and π∗,j =

∑m
i=1 πi,j . We consider the distribution to

be independent if πi,j = πi,∗π∗,j ∀i, j. Of immediate statistical interest is testing
if the original population is independent, given an observed sampleX . As is often
the case in statistics we can not, without additional information, in the form of

1A set the allows repetitions.
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priors, determine if the “Null Hypothesis” H1 : πi,j = πi,∗π∗,j ∀i, j is likely to
be true or false. Instead we calculate a significance or how likely X’s deviation
from independence would be if H1 were true. If X is too far from independent
(Xi,j too far from X∗,iX∗,j/T ) then we may suspect that the original population
was not H1 distributed.

3.2 Statistical hypothesis testing.
The obvious method for testing if X is typical, assuming H1, would be to use the
Xi,j/T as observed estimates for the πi,j and then to check if the independence
relations approximately hold. This requires estimating (n−1)(m−1) parameters
from the experiment. A slightly more subtle approach is to let ri = Xi,∗ and cj =
X∗,j and look at the, unknown, distribution restricted to Y s such that Yi,∗ = ri
and Y∗,j = cj . The density function for any population obeying H1 restricted to
the row and column conditions is independent of all of the, unknown, πi,js. If fact
P (Y |r, c) (the probability of observing the table non-negative integral table Y that
has row/column totals matching r and c is the so called Fisher/Yates distribution:

P (Y |r, c) =

T !∏m

i=1

∏n

j=1
(Yi,j !)(

T !∏m

i=1
(ri!)

)(
T !∏n

j=1
(cj !)

) . (3.2)

Thus for two different distributions π1, π2 on the original population that obey the
independence hypothesis H1 we have for any two tables X, Y such that Xi,∗ =
Yi,∗ and X∗,j = Y∗,j we have Pπ1(X)/Pπ1(Y ) = Pπ2(X)/Pπ2(Y ) even though
Pπ1(X) may be very different from Pπ2(X).

Because of this observation it is considered good practice (c.f. [16]) to perform
the desired significance tests in the subset of contingency tables that have Yi,∗ = ri
and Y∗,j = cj . Given this restriction we see that measuring the deviation ofX from
independence is equivalent to measuring the deviation of X from the intersection
of the independence surface and the subspace of tables that obey the row and
column restrictions. The surface and restriction subspace intersect at exactly one
point Y such that Yi,j = Xi,∗X∗,j/T so we have again reduced the hypothesis H1

to a single table (instead of a surface of tables) but this time without estimating
(n − 1)(m − 1) parameters. This method is not very different from the obvious
one given above but does permit a sharper analysis (and tighter bounds).

It is easy to show the above density function is log-concave (replace x! with
Γ(x + 1) everywhere and notice that ψ(1)(x) = d2[ln(Γ(x))]

dx2 is non-negative for
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x > 0 [1] 6.4.10). Thus we know that if the density will fall off at least as fast as
some exponential as distance from the mode decreases. It can be shown that in a
wide variety of circumstances that the mode is very near the independent table2

so the most important component of significance is going to be distance from the
independent table.

A natural candidate for this metric is the “chi-square” distance which is de-
fined as:

χ2(Y ) =
∑
i,j

(
Yi,j − Xi,∗X∗,j

T

)2

Xi,∗X∗,j
T

. (3.3)

The χ2 of a table Y is just the square distance of Y from independent where
each coordinate is rescaled by a factor of Xi,∗X∗,j/T . A natural significance test
for Y is then to measure the proportion of the Fisher-Yates distribution corre-
sponding to tables with χ2 higher than Y . If very few tables have χ2 higher than
Y we should know that Y is a unlikely table under the independence hypothesis
H1.

3.2.1 Fisher-Yates test
There are a lot of asymptotic methods for computing the significance (with respect
to the Fisher-Yates distribution) of a contingency table [42, 30, 6, 7]. Most of
these techniques rely on the central limit theorem and normal approximations to
the Fisher-Yates distribution. These method are often quite far off for moderate
sized tables.

Fortunately there is an obvious pseudo polynomial scheme for generating such
tables from the Fisher-Yates distribution. So randomized approximation schemes
are easy to implement. Consider the complete bipartite graph with vertex sets
V1, V2 (|V1| = |V2| = T ).

V1
def
= {(i, k) | i = 1 · · ·m, k = 1 · · · ri}

V2
def
= {(j, l) | j = 1 · · ·n, l = 1 · · · cj }

Select a perfect matching M uniformly at random. Notice that there are T ! such
perfect matchings (vertices are distinguishable, edges are not). Now associate

2The mode isn’t always at the independent table. Consider a tables with row sums
[1 1 1 1 1 1 10] and column sums [1 1 1 1 1 1 10]. The independent table has density about 0.006
while the table Y with Yi,j = 0 for i, j < 7, Yi,7 = 1 for i < 7, Y7,j = 1 for j < 7 and Y7,7 = 4
has density about .026. These two tables differ by more than 2 in the bottom right entry.
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with M the following table:

Xi,j = |edges of the form ((i, k), (j, l)) for any k, l|

Notice X obeys the row/column sums r, c and there are exactly
(
∏m

i=1
(ri!))

(∏n

j=1
(cj !)

)
∏m

i=1

∏n

j=1
(Xi,j !)

different perfect matchings that map to this X . Thus

uniform M leads to Fisher-Yates distributed X .

3.2.2 Uniform test
A major problem with the Fisher-Yates distribution is that it is very tightly concen-
trated about its mode. This causes to Fisher-Yates test to reject almost all tables
when T is large. For example the Fisher-Yates test will reject all tables where Xi,j

differs from the independent value X∗,jXi,∗/T by more than
√
X∗,jXi,∗/T . This

guarantees rejection if any constant percentage of the classifications are in error,
no matter how small, is present in the data. Diaconis and Efron [16] suggest a
number of techniques to deal with this problem including a significance test based
on the uniform distribution. For this test the significance is the ratio of the number
of contingency tables with χ2 greater than χ2(Y ) (and identical row and column
sums) to the total number of tables with the given row and column sums = ](r, c).
This test has the nice property that it depends on the structure of the table Y much
more strongly than it depends on T . The difficulty is that computing the numera-
tor of this ratio has been shown to be ]P hard in general.[24] Another quantity of
interest is the “likelihood ratio statistic” which is the ratio of how likely a table is
under the Fisher-Yates distribution to how likely the table is under the uniform dis-
tribution (= P (Y |r, c)/(1/](r, c))). This quantity is useful in making qualitative
statements about a table. This can be important because if one decides to reject
the independence hypothesis H1 one often still needs to characterize the table in
question.

3.2.3 Some counting preliminaries
We now investigate ](r, c) in its own right. Good references for this problem are
[18, 16, 20].

When we have m = n and r = c = k~1 the problem reduces the the classic
problem of counting the number of magic squares. The counting function turns
out to be polynomial of degree (m−1)(n−1) in k. The highest degree coefficient
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of this polynomial is the volume of the transportation polytope, a quantity of in-
dependent interest. Blakley[13] showed that ](r, c) is a piecewise polynomial (in
r, c) of degree (m − 1)(n − 1) and [15] reproves this result. Sturmfels strength-
ens these results [51, 52] and we have reworked his proofs to create an effective
procedure for fixed m,n.

From [52] a generating function for ](r, c) is:

m∏
i=1

n−1∏
j=1

1

1− xiyj
=

∑
r1···rm,c1···cn−1∈Z,cn=

∑m

i=1
ri−
∑n−1

j=1
cj ; r,c≥0

](r; c)

(
m∏
i=1

xrii

)n−1∏
j=1

y
cj
j

 .
(3.4)

3.3 Barvinok’s algorithm.
Barvinok [8] recently published a polynomial time algorithm for counting the
number of integer points in any integral polytope in fixed dimension. This result
implies that counting the number of contingency tables for fixed m,n is solvable
in polynomial time. Barvinok’s result reduces the counting problem to solving a
family of sums over the lattice points in a set of cones. This counting scheme, if
applied directly, would run in time proportional to the the index, with respect to
the standard lattice, of the integer lattice intersected with these cones. In general
these indices (also called the cardinality of the glue group in Conway and Sloan)
can be double exponential in the size of presentation.

For any simple rational cone K in Rd let χK be the indicator function of K.
That is χK(x) = 1 if x ∈ K and 0 otherwise. Since K is a simple rational
cone there is a linear independent set of integral vectors u1, · · ·uk that generate
K. Ind(K) is then the size of the quotient group (Zn ∩ Lin(u1, · · · , uk))/ <
u1, · · · , uk >. Barvinok identifies a scheme which finds cones K1, · · · , Ks and
integers ε1, · · · , εs such that χK =

∑s
i=1 εiχKi and Ind(Ki) ≤ Ind(K)(d−1)/d

where d is the, fixed, dimension of space. Thus in only a log-log number of
levels of recursion the problem can be reduced to problems involving only cones
with constant index. This method has not been directly applied to contingency
tables, though the unimodular nature of the contingency table relations may admit
a number of improvements over the general algorithm.
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3.4 Piecewise polynomialality of the number of con-
tingency tables.

Here we give a simple proof of the fact that the number of contingency table is
piecewise polynomial function of row and column sums where the number of
pieces is at most (nm)(n+m)2 for n by m contingency tables. The proof is not
specialized to contingency tables, but applies to any counting problem involving
totally unimodular constraints.

Take A, a totally unimodular d by w matrix of rank d such that the only solu-
tion to Ax = 0, x ≥ 0 is x = 0. For any v ∈ Rd let Pv be the polytope defined
by

Pv = {x ∈ Rw | x ≥ 0 , Ax = v} . (3.5)

We call
](v)

def
= |Pv ∩ Zw| (3.6)

the counting function of A.

Theorem 6 If A is as above then the counting function of A is a piecewise poly-
nomial with no more than d

(
d(wd)
d

)
pieces and total degree equal to w − d.

This is not a new result (this was known to [15] and much stronger results
are known by Sturmfels [51, 52, 11]) but the presentation given here is, hope-
fully, more approachable and is useful in describing the algorithms. In addition
to proving the counting function is piecewise polynomial we demonstrate a poly
time (for fixed dimension) method of computing the decomposition into pieces
and techniques for inferring the polynomials. These methods can be strengthened
to deal with the non-unimodular case but run in time proportional to the indices
of various sub lattices in the standard lattice. Before we prove the theorem we
present some geometric lemmas.

We wish to find conditions on u, v so that the operation of Minkowski addition
(point-wise adding two sets) and adding right hand sides of linear relations are
identical, or

Pu + Pv = Pu+v. (3.7)

Remark: 2 Clearly Pu +Pv ⊆ Pu+v but this containment can be strict, example:

A =

{
1 1 1 0
1 2 0 1

}
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u =
{

1 99
}>

v =
{

99 1
}>

Pu+Pv ∼ {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y ≤ 2, x+ 2y ≤ 3} while Pu+v ∼
{(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ 2y ≤ 100}.

Let Ei ∈ Rw be the standard basis vector such that Ei
j = δi,j . Let x be an

arbitrary vertex of Pu. At least w − d of the entries of x must be zero and there
is a σ ⊆ {1, 2, · · ·w} such that |σ| = d, xi = 0 for i 6∈ σ, and if A′ is A with the
w−d rows Ei, i 6∈ σ added on then A′ is rank w. For matrices A let Aσ denote the
d by d matrix formed by taking (in order) the columns Ai s.t. i ∈ σ, for vectors
x let xσ denote the d-vector corresponding the the entries whose indices are in σ.
In linear programming terms Aσ is a basis and σ is the indices of set of columns
corresponding in this basis. We see that if Ax = u then we must have Aσxσ = u
and | det(Aσ)| = | det(A′)|. So Aσ is full rank and we see that xσ = A−1

σ u, so x is
completely determined by σ (or, again in linear programming terms, the naming
of the basis determines a basic solution).

Define the sets of indices corresponding to basic solutions:

B = {σ ⊆ {1, 2, · · ·w} | |σ| = d, det(Aσ) 6= 0} . (3.8)

And further define

R =
{
x ∈ R

∣∣∣ ∃σ ∈ B, x is a row of A−1
σ

}
(3.9)

as the “important” relations of the basic solutions.
For σ ∈ B and u ∈ Rd let ν(σ, u) be the point in Rw such that ν(σ, u)i =

0, i 6∈ σ and (ν(σ, u))σ = A−1
σ u. We associate with each u a function χu : Rw →

0, 1 defined such that

χu(r) =

{
1 r · u ≥ 0
0 otherwise . (3.10)

It should be clear that
vertices(Pu) = {ν(σ, u) | σ ∈ B, χu(r) = 1 for all rows r of A−1

σ }.

Lemma 6 If Pu and Pv are pointed and bounded and χu = χv then Pu + Pv =
Pu+v.
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Proof: If Pu or Pv is empty then they both must be empty and the theorem is true.
Because Pu and Pv are both pointed and bounded we know that Pu+v is pointed
and bounded. Then, since we only need to show Pu+v ⊆ Pu + Pv, it is sufficient
to show if z is a vertex of Pu+v then there exists x ∈ Pu and y ∈ Pv such that
z = x+y. It is easy to see that χu+v = χu(= χv) because r · (u+v) = r ·u+r ·v
and sign(r · v) = sign(r · u) by assumption. So we find a σ ∈ B such that
ν(σ, u+ v) = z and we know that x = ν(σ, u) ∈ Pu and y = ν(σ, v) ∈ Pv. 2

Corollary 1 There exists a set of full dimensional cones C1, C2 · · ·Cr in Rd with
the positive orthant covered by

⋃r
i=1Ci such that if u, v ∈ Cj then Pu+Pv = Pu+v

and r ≤ d
(
d(wd)
d

)
.

Proof: We see that the linear relations in R divide the Rd space of right hand sides
into pieces where Minkowski addition of polytopes and vector addition of right
hand sides operate identically. |B| ≤

(
w
d

)
, |R| ≤ d|B| ≤ d

(
w
d

)
. It is a well known

fact that k hyperplanes can split Rd into at most

d∑
i=0

(
k

i

)

regions. We have k ≤ d
(
w
d

)
so we will have at most

d∑
i=0

(
d
(
w
d

)
i

)
≤ d

(
d
(
w
d

)
d

)

full dimensional cones. 2

We will use Σ to denote the set of full dimensional cones (often called a “fan”
when extended to include all lower dimensional cones). For m by n contingency
tables we have d = m + n − 1 (one of the row totals is dependent on the other
row and column totals) and w = mn. We then have the easy upper bound of
(mn)(m+n)2 cones. We have completed the geometric preliminaries and, after a
couple lemmas about polynomial arithmetic, are ready to prove the main theorem.
We now demonstrate that the counting function is a low degree polynomial when
restricted to any cone C ∈ Σ.

Lemma 7 Suppose p̄ : Qk → Q is a rational polynomial of degree s in
x1, · · · , xk,M is a d×k rational matrix of rank d and ∀x ≥ 0 integral, ∀y integral
such that My = 0 and x+ y ≥ 0 we have p̄(x) = p̄(x+ y) then there is a unique
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rational polynomial p of degree s such that the following diagram commutes:

Qk -
M

Qd ∼ Qk/M
@

@
@

@
@

@
@

@R Q

p̄

?

p

Proof: First we prove ∀x, y My = 0 → p̄(x) = p̄(x + y). We relax the
sign conditions on x and x + y and the integrality of x. Suppose y ∈ Zk is
such that ∀x ∈ Zk ≥ 0 ∧ x + y ≥ 0 → p̄(x) = p̄(x + y). Pick b such
b + y ≥ 0 and define p1(x) = p̄(x + b) and p2(x) = p̄(x + b + y). We see
that ∀x ∈ Zk ≥ 0 p1(x) = p2(x) which is enough to establish that they are
identical polynomials. Thus we have if y is integral such that My = 0 then
∀x p̄(x) = p̄(x + y). Now pick any y ∈ Qk such that My = 0. Define
p3(j) = p̄(x + jy). p3 is a degree s polynomial in j and we can easily find s + 1
values of j, j1, j2 · · · jd+1, such that jiy is integral. We have p3(ji) is constant at
these points and therefore is equal to the constant p̄(x) everywhere. In particular
p̄(x) = p3(0) = p3(1) = p̄(x).

It is clear that there is a unique function p : Qd → Q that completes the
diagram, so it remains only to show that p is a rational polynomial of degree no
more than s. Pick li1 , · · · , lid linearly independent columns of M and let L =
(li1 , · · · , lid) then we see ∀v ∈ Qd p(v) = p̄(L−1v). 2

We now state, without proof, an important result in the geometry of numbers
(see [34] pp. 135-140).

Theorem 7 (McMullen) If P1, P2, · · ·Pk are integral polytopes in Rs then for
non-negative λ ∈ Zk then ]

(∑k
i=1 λiPi

)
is a polynomial in λ1, λ2, · · ·λk of total

degree no more than s.

Theorem 8 If A is totally unimodular then for each C ∈ Σ there exists pC a
polynomial of degree no more than w − d in v1 · · · vd such that ∀v ∈ C ∩ Zd the
number of integer points in Pv is equal to pC(v).

Proof: C is a full dimensional rational convex polyhedral cone, so by Gor-
don’s Lemma or the Hilbert Basis Theorem [29] (pp. 11-12) we know that
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the semigroup of integer vectors in C is finitely generated, say with generators
c1, · · · , ck ∈ C. Because A is totally unimodular we know from [34] (pp. 135-
140) there is a polynomial p̄C of degree w − d in variables x1 · · ·xk such that if
v ∈ Zd, x ∈ Zk and v =

∑k
i=1 xic

i (xi ≥ 0) then the number of lattice points in
Pv is equal to p̄C(x). If

∑k
i=1 xic

i =
∑k
i=1 yic

i then we must have p̄C(x) = p̄C(y)
and we see that we meet the conditions of lemma 7. with the polynomial p̄C and
matrix M = (c1, · · · , ck). Thus there is a polynomial pC of degree no more than
w − d in variables v1, v2 · · · vd such that pC(v) = ](Pv) for all v ∈ C. 2

For contingency tables we have A is the (m+ n− 1)× (mn) matrix where

Ai,j =

{
δi−1,b(j−1)/mc i ≤ m
δi−m,j−nb(j−1)/nc otherwise

A is totally unimodular because its rows are split into two classes (i ≤ m and
i > m) such that each column has exactly one entry from each class (page 276
of [46] ). The above theorems imply that for m and n fixed we can pre-compute
the complete fan Σ and for each cone C ∈ Σ pre-compute the enumeration poly-
nomial pC . This means that for fixed m and n that the counting problem for
contingency tables can be solved in polynomial time.

Direct formulae for 2 × n and 3 × n contingency tables were given by Brad
Mann [18]. While these formula are exponentially large in n it has been noticed
that they have fewer terms than the a dense polynomial for a cone would have
(Mann’s 3×n formula has (2n)2 = 4n terms where the 3×n polynomial could, if
dense, have

(
3n
n+2

)
� O((6.75)n) terms). It should be noticed that the polynomial

techniques given above can, without modification, handle contingency tables with
censored entries (just leave out columns of A).

3.5 Counting tables with structural constraints.
A table with a structural constraint is a matrix X that has, in addition to the con-
straints mentioned in earlier sections, constraints of the form Xi,j = v, Xi,j ≤ v
or Xi,j ≥ v for various i, j. It is easy to see (by modifying ri and cj) that it would
be sufficient to know how to count tables with constraints of the form Xi,j = 0
efficiently. This is done by eliminating these constraints one by one using the
relationship:

](r; c : Xi,j = 0, · · ·) = ](r; c : · · ·)−](r1, · · · , ri−1, · · · rm; c1, · · · , cj−1, · · · cn : · · ·)
(3.11)
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(when ri, cj > 0). One could also perform directly the same cone decomposition
that works for tables without structural constraints- but this would require more
storage.

It is clear that the number m×n table with arbitrary structural constraints can
be counted in about the same amount of time as m× n tables (if extra oracles are
produced) or in time no more than 2mn times the time to count one n ×m table
using just one counting oracle.

3.6 Assigning a manageable order to tables.
If instead of counting one wishes to explicitly enumerate contingency tables it is
useful to define a total order on tables. This order is also very useful in construct-
ing a contingency table sampling scheme from a counting oracle.

Let T (r1, · · · rm; c1, · · · cn) = T (r; c) be the set ofm by n non-negative integer
matrices X such that ∀i ∑n

j=1Xi,j = ri and ∀j ∑m
i=1Xi,j = cj . We assign a

linear order to this set. The order we have been working with is the “lex” order
defined ∀X, Y ∈ T (r; c)

(X > Y )↔

 ∃a, b 1 ≤ a ≤ m, 1 ≤ b ≤ n Xa,b > Ya,b
∧ ∀j > b Xa,j = Ya,j
∧ ∀i > a∀j Xi,j = Yi,j


(3.12)

With some care we can step through all the tables in T (r; c) efficiently. We
appeal to a routine called “backfill”. When X is a m by n matrix and a, b are
integers backfill(X, a, b, r, c) returns the lex least non-negative integral table
Y obeying margins r, c such that Yi,j = Xi,j for all i > a and if 1 ≤ a ≤ m then
Ya,j = Xa,j for all j > b. If there are no such tables backfill returns ⊥.

backfill works the following simple observation. Let T (r; c : Xm,j1 =
v1, · · ·Xm,jk = vk) be the set of tables X ∈ T (r; c) such that Xm,j1 =
v1, · · ·Xm,jk = vk

Lemma 8 T (r; c : Xm,j1 = v1, · · ·Xm,jk = vk) = ∅ iff T (r; c : Xm,j1 =
v1, · · ·Xm,jk = vk, Xm,jk+1

= vk+1) = ∅ where all the ji (i = 1 · · · k + 1)
are distinct and vk+1 = max(0,min(cjk+1

, rm −
∑k
i=1 vi)).

Proof: Clearly there is only one direction to prove (as adding a constraint can not
make an infeasible system feasible). So assume T (r; c : Xm,j1 = v1, · · ·Xm,jk =
vk) 6= ∅ and let X ∈ T (r; c;Xm,j1 = v1, · · ·Xm,jk = vk) be a table with maximal
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Xm,jk+1
. It is clear that Xm,jk+1

≤ vk+1. If Xm,jk+1
< vk+1 then there are a, b such

that Xa,jk+1
> 0 and Xm,b > 0 and b distinct from all j and we could build a new

table by increasing Xm,jk+1
and Xa,b by 1 and decreasing Xa,jk+1

and Xm,b by 1.
Thus, since Xm,jk+1

was maximal, have a feasible table with Xm,jk+1
= vk+1. 2

So backfill can operate by filling in the highest index row first (the most
significant entries fall in this row) and trying to put as much mass as possible in
the least significant (left most) positions in the row (using lemma 8). If no sums
are violated then the table created is the lex least matching the specified partial
table, otherwise there are no such tables (and backfill should return ⊥).

One can efficiently step through all the tables in T (r; c) by calling
backfill(0,m + 1, 0, r, c) to get the lex-first table Y1. To proceed to the next
table one sets (a, b) to the least significant entry (1, 1), sets Y to be the current
table with the (a, b)th entry incremented by 1 and calls backfill(Y, a, b, r, c)
and determines if the returned table is feasible. If the table is infeasible (a, b) is
advances to the next significant entry, which is increased by 1, and the call is re-
peated. The first legal table returned is the next table in our lexicographic order.
This method imitates the propagation of carries found in counting, so even though
a simple analysis indicates that it could take nm](T (r; c)) fill in attempts to run
through all ](T (r; c)) tables it is easy to see (for tables where r and c have all
largish entries) this method actually lists all the tables using only O(](T (r; c)))
calls to backfill.

3.7 Divide and conquer.
Let Xi denote the ith row of a matrix X . The basic method we are using to count
m by n tables (m ≥ n) is as follows: let k = bm/2c and q1 =

∑k
i=1 ri and

q2 =
∑m
i=k+1 ri we then notice that

](T (r1, · · · rm; c1, · · · cn)) =
∑

X∈T (q1,q2;c1,···cn)

](T (r1, · · · rk;X1))×](T (rk+1, · · · rm;X2)).

The idea is simple: we can split each table into two independent set of rows
if we know how much each column sums to in each set of rows. Thus if we sum
over all ways the columns can split their totals between these sets (the set of such
splits is equivalent to a set of 2 × n tables) then we can multiply the number of
ways to fill in the top and bottom portions- allowing us to count much faster than
explicit enumeration.
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This formula can be applied recursively and we can stop the recursion at the
base cases where m or n is equal to one and the answer is one. This method
is much faster than explicitly enumerating all of the tables (in fact it was able to
calculate the number of tables consistent with Snee’s hair and eye color margins in
under 20 minutes on an HP720). This method is not polynomial even for fixed m
and n. However it is sufficient to solve counting problems to infer the piecewise
polynomial that is the true counting function.

Remark: 3 Actually exhaustive enumeration would be sufficient to imply a poly-
nomial time counting method for fixed m, n as the tables that need to be solved to
infer the piecewise polynomial depend only on m and n and not on the margins
of any particular table one wishes to know the count of. This would, of course, be
prohibitive in practice so it is desirable to develop the divide and conquer tech-
nique.

3.8 Inferring the piecewise polynomial.
At this point we have an effective scheme for identifying the regions that the
counting function is a well behaved on. All the remains is to infer the polynomial
for each piece. There are some results in commutative algebra that relate the
polynomials to “Hilbert Series” and “Todd Classes”, but these structures encode a
lot of information and are in themselves often hard to compute. The strategy taken
here is to assume access to a counting oracle (in this case simulated by the divide
and conquer counter) and then recover the desired polynomial by interpolating the
values known in a region.

3.8.1 Lagrange interpolation
The first interpolation method is not too sophisticated. We find a point b in the
cone we are working with such that b + sEi (s is the degree of the polynomial)
is in the cone for all i. We know such a point must exist because the cone we are
using is pointed and full dimensional (and therefore contains arbitrarily big balls
as we move away from the origin). We then count (by divide and conquer) all
the tables corresponding to any set of margins found in the set of points x ∈ Zd

(d = r+c−1, w = rc, s = (r−1)(c−1)) such that x ≥ b and~1 ·(x−b) ≤ s. The
counts at these points are used to determine the polynomial by using “Lagrange
interpolation.” For b, x ∈ Zd and s ∈ Z such that x ≥ b and ~1 · (x − b) ≤ s the
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Lagrange polynomial lb,x,s is the unique degree s polynomial in variables v1 · · · vd
such that lb,x,s(x) = 1 and lb,x,s(y) = 0 for any integral y 6= x such that y ∈
Zd, y ≥ b, ~1 · (y − b) ≤ s. lb,x,s has a very simple definition

lb,x,s(v) =


∏s
i=1

(
1 +

~1
i
· b− ~1

i
· v
)

x = b
(vi−bi)
(xi−bi) lb+Ei,x,s−1 xi > bi, xj = bj ∀j < i

(3.13)

It is then easy to see that

pC =
∑

x∈Zd, x≥b, ~1·(x−b)≤s

F (x)lb,x,s (3.14)

where F (x) is the number of integer points in Px.
This technique is important because we do not have to explicitly store a lin-

ear transformation to fit the polynomial coefficients to the known evaluations (in
the 4 × 4 case there are

(
16
7

)
= 11440 coefficients to fit which would require a

11440 × 11440 matrix if the linear transformation were stored explicitly. If each
entry took just 16 bytes to store this would still represent almost 2 gigabytes of
storage). Also if extra storage is available this method can change k polynomial
values into k coefficients in time O(k2). This can be accomplished by building
a table of all k Lagrange polynomials in a sort of Gray-code order (where most
polynomials in the table can determined by dividing a known one by a binomial
and multiplying by another binomial in O(k) time). Even though this requires as
much storage as the direct linear algebra approach it is much faster. The primary
weakness of this method is that b may be very large and require the solution of
very difficult counting problems (though the set of problems requiring solution is
very structured, allowing some savings).

A nice generalization, which would help with “large b” problem mentioned
above, would be to find how to easily compute Lagrange polynomials for an ar-
bitrary set S such that S determines pC and S has minimal cardinality. The poly-
nomials would then be indexed by x, S and d where lx,S,s would be the unique
degree s polynomial such that lx,S,s(x) = 1 and lx,S,s is zero on S \ x. By linear
algebra we know that such a basis for the space of all degree s (or less) polynomi-
als exists- but it is not clear that it can be competed with limited space and time
(i.e. with less space than the number of terms squared).

One conjectured method to efficiently perform this calculation would be to
hope that all minimal S have structure similar to the simplex we used in the last
section. The recursive formula given for the Lagrange polynomials depended on
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finding a set of degree 1 polynomials ((vi− bi), i = 1 · · · d and (~1 · v− s−~1 · b))
that each zeroed out at least

(
n+d−1

d

)
points in S but have no common zero in S.

Even for the simple case of d = 2, s = 2 this is not always possible. Take

S = {(0, 0), (1, 0), (0, 1), (1, 1), (3, 2), (2, 3)}. (3.15)

We expand elements of S to vectors in R6 by taking (x, y)→ (1, x, y, xy, x2, y2)
and write down the 6× 6 matrix gotten by expanding all of S:

M =



1 0 0 0 0 0
1 1 0 0 1 0
1 0 1 0 0 1
1 1 1 1 1 1
1 3 2 6 9 4
1 2 3 6 4 9


. (3.16)

We see that det(M) = 32 6= 0 so S is a minimal basis of the kind we wanted. But
no
(
d+s−1
s

)
=
(

3
2

)
= 3 points in S are collinear- so there is no way to build the

Lagrange polynomials up from degree 1 polynomials as before.

3.8.2 An improvement
A simple improvement is to notice that if M : Rd → Rd is a full rank linear
transformation and p : Rd → R is a rational polynomial of degree no more than s
then p̄ defined such that p̄(x) = p(M−1x) is also a rational polynomial of degree
no more than s. For each cone C ∈ Σ we let MC be the d × d matrix whose
columns are the first d integral vectors in C such that M is full rank (vectors
ordered in graded lex order). Then we see if S =

{
x ∈ Zd

∣∣∣ x ≥ 0 ,~1 · x ≤ s
}

then MC(S) is a set of points that determine the interpolation polynomial for the
cone C and p̄ can be inferred by the above naive method. The advantage is that
this set of problems may be much smaller (and therefore easier) that the set of
problems that the original interpolation method would require. Finding a basis for
Zd in the given cone is of course a hard problem, but it is a problem in Zd not
in the much larger space of coefficients and evaluations. In practice d is so much
smaller than the number of coefficients needed that the time needed to search for
the small basis by brute force has been negligible compared to any of the other
steps in the algorithm. It would be interesting to use more subtle techniques such
as computing a Hilbert basis for the cone and examining it for an acceptable short
basis.
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3.9 Sampling from counting.
For many statistical tests it is important to be able to generate a table uniformly
at random that obeys given row and column sums. It is well know [38] that sam-
pling and counting are intimately related. For this problem the relationship can
be exposed by combining the fixed dimensional counter and the “lex” ordering
introduced here for brute force enumeration. The method is as follows.

Suppose we want to generate a table, X , uniformly at random obeying rows
sums r1, r2, · · · rm and column sums c1, c2, · · · cn where m,n are fixed. We will
assume that we have pre-computed a representation of the piecewise polynomial
counting function, so we can count tables at will. First we compute N , the total
number of tables obeying r, c. We generate a integer k in the set {1, 2, · · ·N}
uniformly at random. We are going to return the lex kth table as our uniform
random sample. First we look at the most significant entry of the table: Xm,n.
If for an integer b such that more than k tables obeyed r, c and the structural
constraint Xm,n ≤ b then we would know that more than the lex kth table must
have Xm,n ≤ b. Similarly we know that if fewer that k tables obeyed r, c and
Xm,n ≤ b then the lex kth table must have Xm,n > b. Thus we can, using binary
search on b, find in time log2(min(rm, cn)) find the true value of Xm,n for the
lex k’th table. We then add Xm,n = b as a structural constraint and use the same
technique to find the correct value for the next most significant entry. This process
is repeated until the entire table is constrained and then X is the lex kth table as
desired. This method can generate a true uniform sample by solving no more than
(m − 1)(n − 1) log2(min(rm, cn)) structural counting problems. We can either
assume that we had the (m−1)(n−1) different types of counting polynomials pre-
computed, or by using the formula 3.11 judiciously and converting each structural
problem into no more that 2n−1 counting problems (notice that we apply structural
constraints to only one row at a time until the row is completely constrained).

3.10 4× 4 results.
We have solved the m = n = 4 case. This case splits into (after some symme-
tries are removed) 3694 cones such that ]4,4 restricts to a degree 9 polynomial in
7 variables in each cone. This means each polynomial is determined by 11440
coefficients so can be interpolated from 11440 sufficiently general evaluations.
Each of the 3694 tasks seems to represent about 3 hours of pmax cpu time, so the
total job represents about 1.5 pmax cpu years. This task was completed in just
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over 6 weeks using Peter Stout’s WAX system [50] which effectively simulates a
coarse-grain parallel supercomputer (employing the numerous idle workstations
at CMU).

This decomposition is able to count the number of tables compatible with the
hair/eye color table 1.1 in 30 seconds.3

3.10.1 Snee’s table
This table 1.1 has been our main test case. It can be counted in under 20 minutes
using the divide and conquer technique. The divide and conquer counter has been
augmented to generate a batch of uniform random samples while counting. This is
accomplished by generating a large set uniform random integers from the range 1
to the total number of tables compatible with the margins. The divide and conquer
procedure is then run with the batch being divided into the appropriate divisions
until the tables are completely filled out. The indices used here are not in the lex
order used in other sections but in an arbitrary, but constant, order determined by
the coding of the divide and conquer algorithm. This method when dealing with
batches of 10000 tables can generate about 20 tables a second. The pre-computed
4× 4 solution can count Snee’s tables in about 30 seconds. And this method can
generate a uniform random sample in a couple of minutes. The generator can be
converted into a batch process (so many tables share the first few hard counting
problems) to generate uniform random tables in a batch. The savings would come
from many tables sharing the harder early counting problems.

The results to date on this table, which clearly has been over studied, are that
best estimate of the chi-square significance of the table is 15.5% with a 3 standard
deviation confidence interval of ±.15.

This agrees well with results from two Markov chains (described later) one
based on a natural “King’s move” walk and one based on the newer “ball move”
walk. These chains returned estimates of 15.6 (±3 std dev interval 15.2 · · · 15.9)
and 15.6 (±3 std dev interval 14.1 · · · 17.1) respectively. The second confidence
interval is much wider as the chain ran for a much shorter time.

The confidence intervals would not have been possible without the proof of
convergence. One could design and run one of these chains without the conver-
gence proof. However for a given length run one would not be able to estimate
how many truly random samples the set of samples drawn for the chain was equiv-
alent to. So there would be no way to draw confidence intervals around the es-

3All CPU times given in this section are HP720 CPU seconds unless otherwise noted.
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timate. Thus one could be in the unhappy circumstance of having two chains in
wild disagreement and be able to draw any conclusions.

3.11 5× 4.
The 5× 4 problem is large enough to be considered impractical. However for any
one table one can identify a cone its right hand side lies in and infer the polynomial
for this cone alone. In fact we have found significant savings in not inferring the
true polynomial by computing

∑
f(x)lx (where f(x) is the true value and lx is the

Lagrange polynomial such that lx(x) = 1 and lx(y) = 0 for all other points in the
interpolations set) but computing the count for the desired table, z, by computing
f(z) =

∑
f(x)lx(z). lx(z) is an integer (not a polynomial) and can be computed

much quicker than lx can and the process requires almost no storage.
This method was used to determine the number of tables compatible with the

margins [ 182, 778, 3635, 9558, 11110 ] and [ 3046, 5173, 6116, 10928 ]
is 23196436596128897574829611531938753 in 8 days on an HP720 workstation.
While this may not seem quick it should be pointed out that computing the sum
mentioned in the previously paragraph is “embarrassingly parallel” (most of the
time would be spent in computing the terms of the sum without any need for
communication) so this calculation could be done quickly on a parallel computer.

3.12 m× 2 and m× 3.
Brad Mann has developed effective formulas for both the m × 2 and m × 3
case. Mann’s results are inclusion/exclusion formulas over all partitions of m.
These formulas have a number of terms comparable to the polynomials devel-
oped here for exact computation but have the distinct advantage of involving no
pre-computation and use very little space.

3.13 Asymptotic performance of estimates.
Asymptotic behavior of the contingency table counting function can be easily read
off our chamber decomposition. This has made possible an interesting comparison
of several estimation schemes in the literature.

The first estimate is from [44] and is intended for sparse tables. Let T =∑m
i=1 ri =

∑n
j=1 cj and assume the row sums are all less than log(min(m,n))1/4−ε
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then
](r; c) ∼ E1(r; c) =

T !∏
ri!
∏
cj!
e

2
T2

∑
i,j (ri2 )(cj2 ) (3.17)

as m,n→∞. When the sparsity condition is not met this estimate tends to be off
by an exponential factor (and is not used for the type of contingency tables arising
in statistics).

The next estimate is from [30] and is intended for non-sparse tables (with a
large number of large rows). The idea is to take the number of tables obeying
the row- constraints and to multiply it by an estimate of the odds of satisfying the
column constraints.

σ2 =
(n− 1)

∑
ri(ri + n)

(n+ 1)n2

Q =
n− 1

σ2n

∑
c2
j − T 2/n

](r; c) ∼ E2(r; c) =
√
ne−Q/2

(
n− 1

2πσ2n

)(n−1)/2 m∏
i=1

(
ri + n− 1

n− 1

)
(3.18)

And the final estimate is from Diaconis and Efron [16]. This estimate is based
on a volume times density of lattice argument- with the novel innovation that
the volume is purposefully overestimated to compensate for some corner effects
missed in this type of analysis. Because of this the Diaconis/Efron technique
estimate is much harder to analyze and not much is know about it.

w =
1

1 +mn/2T

r̄i =
1− w
m

+
wri
T

c̄j =
1− 2

n
+
wcj
T

k =
n+ 1

n
∑m
i=1 r̄i

2
− 1

n

](r; c) ∼ E3(r; c) =
(

2T +mn

2

)(m−1)(n−1)

×
(
m∏
i=1

r̄i

)n−1
 n∏
j=1

c̄j

k−1
Γ(nk)

Γ(n)mΓ(k)n
(3.19)
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The first asymptotic trajectory we examine is counting the number of tables
with row sums [t, kt, kt] and column sums [t, kt, kt] where k is a positive integer.
By examining the complete 3 by 3 solution it is clear that the number of tables
obeying these margins is(

k

3
− 5

24

)
t4 +

(
3k

2
− 3

4

)
t3 +

(
13k

6
− 7

24

)
t2 +

(
k +

5

4

)
t+ 1

which is asymptoticly
(
k
3
− 5

24

)
t4 as t→∞ and k is held constant. A little work

shows the asymptotic behavior of the estimates on this trajectory is as follows.

log(E1) � (1 + 2k2)2

2(1 + 2k)2
t2 (3.20)

E2 � 3
√

3k2

4π(2k2 + 1)e4(k−1)2/(2k2+1)
k2t4 (3.21)

E3 �
2

8 k (2+k)

1+2 k2 k10/3 k2

(2+4 k)3

− 4
3

+
4 (1+2 k)2

3 (1+2 k2) Γ(3+16 k+14 k2

1+2 k2 )

8 (1 + 2 k)2 Γ(3+16 k+14 k2

3+6 k2 )
3 k2/3t4 (3.22)

EstimateE1 is not really worth discussing (it was never intended for this case).
EstimateE2 tends to overestimate the count by a factor of about k andE3 tends to
underestimate by a factor of k1/3. Figure 3.1 plots the behavior of these asymptotic
expressions as a function of k. The graph is the value of equations 3.21 and 3.22
and the true asymptotic behavior ( as t→∞), all divided by t4, as functions of k.
Figure 3.2 shows the same trend with the true count rescaled to be 1.
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Figure 3.1: Asymptotic behavior of counting estimates.
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Figure 3.2: Rescaled asymptotic behavior of counting estimates.
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Another interesting trajectory is [t, t2, t3]; [t, t2, t3]. Along this trajectory
the number of contingency tables is asymptoticly t5/3, E2 is asymptoticly
3
√

3/(4πe4)t6 and E3 is asymptoticly t6/4.

3.14 Large tables with small margins.
The divide and conquer counter (when combined with Mann’s formulas as base
cases) is able to exactly tables from the literature.

For example, Mehta and Patel [42], in the course of performing significance
tests, estimate counts for the following tables (using Gail/Mantel’s method [30]).

Problem 1:

Total
1 1 1 0 0 0 1 3 3 10
4 4 4 4 4 4 4 1 1 30

Total 5 5 5 4 4 4 5 4 4 40

Problem 2:

Total
2 0 1 2 6 11
1 3 1 1 1 7
1 0 3 1 0 5
1 2 1 2 0 6

Total 5 5 6 6 7 29

Problem 3:

Total
2 0 1 2 6 5 16
1 3 1 1 1 2 9
1 0 3 1 0 0 5
1 2 1 2 0 0 6

Total 5 5 6 6 7 7 36

Problem 4:

Total
1 1 1 0 0 0 1 2 4 10
4 4 4 5 5 5 6 5 0 38
1 1 1 0 0 0 1 2 4 10

Total 6 6 6 5 5 5 8 9 8 58
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Problem 5:

Total
1 2 2 1 1 0 7
2 0 0 2 3 0 7
0 1 1 1 2 7 12
1 1 2 0 0 0 4
0 1 1 1 1 0 4

Total 4 5 6 5 7 7 34

Problem 6:

Total
1 2 2 1 1 0 1 8
2 0 0 2 3 0 0 7
0 1 1 1 2 7 3 15
1 1 2 0 0 0 1 5
0 1 1 1 1 0 0 4

Total 4 5 6 5 7 7 5 39

Our results working with these tables are as follows:

Problem True count reported est Gail/Mantel ests Diaconis/Efron ests
1 35353 40500 34534,73397 37992,40169
2 3187528 1.1 ∗ 106 3.01 ∗ 106 , 3.84 ∗ 106 3.30 ∗ 106,3.32 ∗ 106

3 97080796 68 ∗ 106 125 ∗ 106,68 ∗ 106 110 ∗ 106, 112 ∗ 106

4 1326849651 624 ∗ 106 1963 ∗ 106, 519 ∗ 106 1615 ∗ 106 , 1757 ∗ 106

5 2159651513 1.6 ∗ 109 2.5 ∗ 109, 1.7 ∗ 109 2.6 ∗ 109 , 2.6 ∗ 109

6 108712356901 64 ∗ 109 132 ∗ 109, 64 ∗ 109 144 ∗ 109, 149 ∗ 109

Table 3.1: Estimates from the literature.

Both the Gail/Mantel and Diaconis/Efron estimate are asymmetric (can give
different estimated counts for a table and its transpose), so we have reported both
estimates (with the better one first). Somebody actually using these estimates
would not be able to, in all cases, identify the best of the two estimates. The
differences between Mehta/Patel’s reported values of the Gail/Mantel estimate
and values given in lines 1,2 and 4 of this table are disturbing (the others are
insignificant).

3.15 Magic squares.
As an exercise we were able to rederive all the known magic square Ehrhart poly-
nomials. pn(x) is defined as the number of n × n non-negative integer matrices
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such that every row and every column adds up to x. p1 · · · p6 are:

p1(x) = 1 (3.23)
p2(x) = 1 + x (3.24)

p3(x) = 1 +
9x

4
+

15x2

8
+

3x3

4
+
x4

8
(3.25)

p4(x) = 1 +
65x

18
+

379x2

63
+

35117x3

5670
+

43x4

10
+

1109x5

540
+

2x6

3
+

19x7

135
+

11x8

630
+

11x9

11340
(3.26)

p5(x) = 1 +
725x

144
+

6229735x2

494208
+

3028287247x3

145297152
+

438177965089x4

17435658240
+

664118435x5

28740096
+

3812839477x6

229920768
+

196563587x7

20901888
+

3541860299x8

836075520
+

55426325x9

36578304
+

125188639x10

292626432
+

984101x11

10450944
+

72750523x12

4598415360
+

112655x13

57480192
+

1008757x14

5977939968
+

188723x15

20922789888
+

188723x16

836911595520
(3.27)

p6(x) = 1 +
3899x

600
+

46584105377x2

2141691552
+

12246206617138789x3

247365374256000
+

382955230861099213x4

4517106834240000
+

155498465793777230567x5

1355132050272000000
+

14226886368398551x6

112634352230400
+

243245111626317349x7

2111894104320000
+

232132948167689x8

2634721689600
+

253578194011961479x9

4446092851200000
+

736591080322991x10

23433524674560
+

16265048187290869x11

1098446469120000
+

2000221303490489x12

334764638208000
+

570713692223620411x13

276180826521600000
+

8346012436199x14

13638559334400
+

1424745952102609x15

9206027550720000
+

77984295979769x16

2343352467456000
+

1062348478211833x17

175751435059200000
+

18674864899x18

20324995891200
+

2462417656967x19

21341245685760000
+

141248912237x20

12014330904576000
+

853529939221x21

901074817843200000
+

4394656999x22

75690284698828800
+

158824242127x23

62444484876533760000
+

9700106723x24

136783157348597760000
+

9700106723x25

10258736801144832000000
(3.28)
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3.16 Availability of software.
The url http://mixing.sp.cs.cmu.edu/ provides an online demonstra-
tion of this work over the World Wide Web.

3.17 Problem hardness.
The problem of determining the number of contingency tables consistent with row
and column totals is quite difficult. Martin Dyer and Ravi Kannan[24] established
the following.

Theorem 9 Determining the number of 2 × n non-negative integer matrices X
such that

∑n
j=1Xi,j = ri (i = 1, 2) and X1,j + X2,j = cj (j = 1 · · ·n) is ]P -

complete.

Proof: In [22] it is shown that given the positive integers a1, a2, · · · , an−1, b it is
]P -hard to compute the n− 1 dimensional volume of the polytope defined by∑n−1

j=1 ajyj ≤ b
0 ≤ yj ≤ 1 (j = 1, 2, · · ·n− 1)

.

Thus if an = b it is ]P -hard to compute the n− 1 dimensional volume∑n
j=1 ajyj = b

0 ≤ yj ≤ 1 (j = 1, 2, · · ·n)
.

Substituting x1,j = ajyj , x2,j = aj(1 − yj) we encode this as a small set of
contingency table problems. We identify cj = aj (j = 1, · · ·n), ,r1 = b and
r2 =

∑n−1
j=1 aj . We then use the fact [34] that for integer k the function f(k) =

](kr, kc) is a degree n − 1 polynomial in k and the coefficient of kn−1 is the
desired volume. Thus if we could solve the contingency table counting problem
for k = 0, 1, 2 · · ·n − 1 we could infer all of the coefficients of f , including the
highest one. It is easy to see that the interpolation can be performed using rational
numbers that require no more than O(n(log(r1 + r2) + n)) bits to represent. 2

3.18 Near uniform generation.
Consider m > 1 row by n > 1 column contingency tables obeying row and
column sums (ri, cj > 0 and integer) such that ri+1 ≥ ri (i = 1 · · ·m − 1) and
cj+1 ≥ cj (j = 1 · · ·n− 1).
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Let T =
∑m
i=1 ri =

∑n
j=1 cj ,

K =


X ∈ R(m−1)(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣

(1)
∑m−1
i=1 Xi,j ≤ cj j = 1 · · ·n− 1

(2)
∑n−1
j=1 Xi,j ≤ ri i = 1 · · ·m− 1

(3)
∑m−1
i=1

∑n−1
j=1 Xi,j ≥ T − rm − cn

(4) Xi,j ≥ 0 j = 1 · · ·n− 1,
i = 1 · · ·m− 1


.

There is an obvious 1 − 1 correspondence between integral points in K and
contingency tables obeying the given row and column sums (fill in last/row col-
umn using the linear dependencies). For u ∈ Z(m−1)(n−1) let

C(u) =

{
x ∈ R(m−1)(n−1)

∣∣∣∣∣ ui,j − 1
2
≤ xi,j < ui,j + 1

2
j = 1 · · ·n− 1,
i = 1 · · ·m− 1

}

and
J =

⋃
u∈Z(m−1)(n−1)∩K

C(u)

Now we wish to find a convex body K ′ such that J ⊆ K ′ and Vol(K ′) is not
too much bigger than Vol(K). If we had such a body then to generate contingency
table (from near uniform distribution) we would use standard techniques to gen-
erate a near uniform point from K ′ and rejection sample until we find a point in J
and round to an integral vector.

Define

Yi,j =
ricj
T

+
min(ri, cj)

2 max(n2 − n,m2 −m)
.

Lemma 9 The coordinate aligned cube of (l∞) diameter min(r1,c1)
2 max(n2−n,m2−m)

cen-
tered at Y is contained in K.

Proof: It suffices to check inequalities (1) and (2) with X = Y + and inequalities
(3) and (4) with X = Y − where Y +

i,j = Yi,j + min(ri,cj)

2 max(n2−n,m2−m)
and Y −i,j = Yi,j −

min(ri,cj)

2 max(n2−n,m2−m)
(= ricj

T
).

1.
m−1∑
i=1

(
ricj
T

+
min(ri, cj)

max(n2 − n,m2 −m)

)
≤ cj(T − rm)

T
+
cj(m− 1)

m2 −m

≤ cj(m− 1)

m
+
cj(m− 1)

m2 −m
= cj.
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2.
n−1∑
j=1

(
ricj
T

+
min(ri, cj)

max(n2 − n,m2 −m)

)
≤ ri(T − cn)

T
+
ri(n− 1)

n2 − n

≤ ri(n− 1)

n
+
ri(n− 1)

n2 − n
= ri.

3.
m−1∑
i=1

n−1∑
j−1

ricj
T

=
(T − rm)(T − cn)

T

= T − rm − cn +
rmcn
T

> T − rm − cn.

4.
ricj
T

> 0

2

Corollary 2 If min(r1, c1) ≥ 2λ(n − 1)(m − 1) max(n2 − n,m2 −m) then the
dilation K ′ of K about Y by (1 + 1

λ(n−1)(m−1)
) contains J and Vol(K′)

Vol(K)
≤ e1/λ.

Proof: If min(r1, c1) ≥ 2λnmmax(n2 − n,m2 − m) then by the last lemma
we know that a coordinate aligned cube of size λ(n − 1)(m − 1) centered at Y
is contained in K. Consider any c ∈ R(m−1)(n−1) and b real such that c · (x −
Y ) ≤ b ∀x ∈ K. Take an arbitrary z such that c · (z − Y ) ≤ b and notice that
C(z) is contained in the half space c · (x − Y ) ≤ (1 + 1/(λ(n − 1)(m − 1))).
From this it is easy to see that K ′ contains J . The volume of K ′ is precisely
(1 + 1/(λ(n− 1)(m− 1)))(n−1)(m−1) Vol(K) which is no more than e1/λ Vol(K).
2

Let ](K) denote the number of points in K with integer coordinates.

Corollary 3 If min(r1, c1) ≥ 2λnmmax(n2 − n,m2 −m) then

e−1/λ Vol(K) ≤ ](K) ≤ e1/λ Vol(K).

Proof: The right inequality follows immediately from the last corollary. Consider
any c ∈ R(m−1)(n−1) and b real such that c·(x−Y ) ≤ b ∀x ∈ K. Take an arbitrary
z such that c · (z−Y ) ≤ b notice that C(z) is in the complement of the half space
c · (z − Y ) ≤ (1− 1/(λ(n− 1)(m− 1))). 2
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3.19 Counting from generation.
The corollaries of the previous section extend into an approximate counting
scheme, if we had a method of approximating the ratio of the number of ta-
bles with row/column totals (r, c) (ri ≥ nmmax(n2 − n,m2 − m), rj ≥
nmmax(n2 − n,m2 − m) i = 1 · · ·m, j = 1 · · ·n) to the number of tables
with row/column totals (r′, c′)

r′i =

{
ri + ∆ i = a
ri otherwise

c′j =

{
cj + ∆ j = b
cj otherwise

for arbitrary a, b and some non-negligible ∆.
Suppose we wish to count to within a relative error of 1 + ε (0 < ε < 1), let

N =
⌈

20nmmax(n2−n,m2−m)
ε

⌉
by the above arguments the number of integer tables

is between e−ε/10 Vol and eε/10 Vol. This means we certainly have the volume
of this body approximates the number of lattice points with a relative error of
no more than 1 + ε/3. volume of a table with all row sums and column sums
≥ N approximates the number of lattice points to within a relative error of 1 + ε

3
.

All that remains would be to use standard technique (as in Lovasz/Simonovits
or Kannan/Lovasz/Simonovits) to calculate the volume of this body to sufficient
accuracy and approximate the ratios of lattice points as outline above.

If we could boost all ri and cj up to at least N in a polynomial number of
stages and compute the ratios of all these stages so that the product of these ratios
has a relative error of no more than 1 + ε

3
then we would have a good estimate of

the number of tables obeying the original row and column sums. We will show
that we can take ∆ =

⌊
min( ri

n
, cj
m

⌋
when trying to boost a row and guarantee

that the ratio of contingency tables obeying the original row/column totals to the
boosted row/column totals is in the range [ 1

(m−1)(n−1)+1
, 1]. This is enough to

allow us to approximately count using no more than O
(
nm ln(max(N,rm)

r1
)
)

stages
(for m rows double each row in about n stages, raise row to max(N, rm) in about
ln(max(N,rm)

r1
) doublings) each being computed to a relative error no finer than

Ω

(
ε

((m−1)(n−1)+1)nm ln(
max(N,rm)

r1
)

)
yielding an approximation scheme that runs in

time polynomial in 1
ε
, n,m.
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boosting a table To compute the ratio of tables obeying (r, c) to (r′, c′) (as de-
fined before) we identify tables X obeying (r, c) with X ′ (equals X with Xa,b

increased by ∆) this defines 1-1 map from tables obeying (r, c) to a subset of the
tables obeying (r′, c′). So we generate a table X ′ from the uniform distribution
that obeys the (r′, c′) and check if we are in the subset corresponding to the (r, c)
tables (ie. is X ′a,b ≥ ∆?). All that remains is to show that this subset of all (r′, c′)
tables is not too small.

Theorem 10 If X is uniform random variable corresponding to a table obeying
the row/column sums (r, c) then Xa,b ≥

⌊
min( ra

n
, cb
m

)
⌋

at least 1
(m−1)(n−1)+1

of the
time.

Proof: Let ∆ =
⌊
min( ra

n
, cb
m

)
⌋
. We will define a map f that maps all tables

obeying (r, c) into the set of tables X obeying (r, c) such that Xa,b ≥ ∆. If
Xa,b ≥ ∆ let f(X) = X otherwise by the pigeonhole principle we see that there
exists x, y such that Xa,y ≥

⌊
ra
n

⌋
and Xx,b ≥

⌊
cb
m

⌋
. Let i, j be the smallest indices

obeying these inequalities (i 6= a, j 6= b). And define

f(X)u,v =



Xu,v + ∆ if u = a and v = b
Xu,v + ∆ if u = x and v = y
Xu,v −∆ if u = x and v = b
Xu,v −∆ if u = a and v = y
Xu,v otherwise

It is easy to see that f maps at most (m− 1)(n− 1) + 1 tables to any point in its
range. 2

a trick to speed it up We can, in some cases, speed up the reduction by avoid-
ing the volume computation. Assume n = m and let Kl denote the polytope
corresponding to ri = l, cj = l for all i, j. Notice the polytope Kl is just lK1.
Also, K1 has only integral vertices because the matrix formed by the left hand
side of the constraints given in the definition of K is totally unimodular. Thus
the theory of lattice point enumerators ([34] pp. 135-140) can be brought in and
we see that a polynomial pl of degree exactly (m− 1)(n− 1) passes through the
integers ](Kl) l = 1 · · ·∞. So if we knew pl (as a non-uniform piece of informa-
tion in the circuit theory sense or from an oracle) we would not have to boost the
table until all rows and columns were above N but only until they were equal (in
fact we could even decrease them all be be min(r1, c1) allowing the more natural
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reduction direction: towards smaller problems). Now by a brute force technique
(similar to the one developed by the authors of STATEXACT [42]) we have ex-
plicitly computed pl for 2× 2, 3× 3, 4× 4, 5× 5 and 6× 6 tables (which can be
used to help enumerate any tables with max(n,m) ≤ 6.

3.20 Difficulty in generating Fisher Yates.
Generating Fisher-Yates distributed tables in time polynomial in log(T ) (instead
of polynomial in T ) seems to be more difficult.

The main problem is that the density function varies quite rapidly. It is easy
to show the density function is log-concave (replace x! with Γ(x+ 1) everywhere
and notice that ψ(1)(x) = d2[ln(Γ(x))]

dx2 is non-negative for x > 0 [1] 6.4.10). But if
a step is taken such that an entry is increased from 0 to d the density function can
vary by as much as a multiplicative factor of d.

In fact the density function can go through an incredible range. Consider a
n by n table with row/column sums all equal to T/n (assume n2 divides T ) and
consider two fill-ins E where Ei,j = T/n2 and U where Ui,i = T/n and Ui,j = 0
for i 6= j.

D(E)

D(U)
=

(
T
n

!
)n

(
T
n2 !
)n2

≥

(√
2π
(
T
n

)T/n+1/2
e−T/n

)n
(√

2π
(
T
n2

)T/n2+1/2
e−T/n2+n/(12T )

)n2

=
nT+n/2(√

2π
)n2−n (

T
n2

)n2/2−n/2
en3/(12T )

which grows as nΩ(T ) for large enough fixed n and growing T .

3.21 Local geometry of Fisher Yates.

3.21.1 Bounds on variation
Consider m row by n column contingency tables, with row sum vector r, column
sum vector c and non-negativity. Take the function F defined over all such tables
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X such that:

F (X) =
∑
i,j

ln Γ(Xi,j + 1) (3.29)

We note that for X > 0 that F is strictly convex [32, 8.363 8].

Lemma 10 If X is a legal table and X > 0 then for any ∆ such that X + ∆ is a
legal table and X + ∆ > 0

F (X + ∆)− F (X) ≤
∑
i,j

∆2
i,j

Xi,j

+
∑
i,j

∆i,jψ(Xi,j + 1) (3.30)

Furthermore, if for all i, j ∆i,j/(Xi,j + 1) ≥ −3/4 then

F (X + ∆)− F (X) ≥
∑
i,j

∆2
i,j

5Xi,j + 3
+
∑
i,j

∆i,jψ(Xi,j + 1). (3.31)

Proof: First define:

f(t) = F (X + t∆) =
∑
i,j

ln Γ(Xi,j + 1 + t∆i,j)

then by [32, 8.360]

f ′(t) =
∑
i,j

∆i,jψ(Xi,j + 1 + t∆i,j)

and [32, 8.363 8]

f ′′(t) =
∑

i,j : ∆i,j 6=0

∆2
i,jψ

(1)(Xi,j + 1 + t∆i,j)

=
∑

i,j : ∆i,j 6=0

∆2
i,j

∞∑
k=0

1

(Xi,j + 1 + t∆i,j + k)2
(3.32)

Also

f ′(t) = f ′(0) +
∫ t

0
f ′′(y) d y

=
∫ t

0
f ′′(y) d y +

∑
i,j

∆i,jψ(Xi,j + 1) (3.33)
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To prove inequality 3.30 assume that X > 0 and X + ∆ > 0. Continuing
from equation 3.32

f ′′(t) ≤
∑

i,j : ∆i,j 6=0

∆2
i,j

∫ ∞
0

d y

(Xi,j + t∆i,j + y)2

=
∑

i,j : ∆i,j 6=0

∆2
i,j

Xi,j + t∆i,j

.

Combining with equation 3.33

f ′(t) ≤
∫ t

0

∑
i,j : ∆i,j 6=0

∆2
i,j

Xi,j + y∆i,j
d y +

∑
i,j

∆i,jψ(Xi,j + 1)

=
∑

i,j : ∆i,j 6=0

∆i,j(ln(Xi,j + t∆i,j)− ln(Xi,j)) +

∑
i,j

∆i,jψ(Xi,j + 1).

So it is enough to get an upper bound on:∫ 1

0

∑
i,j : ∆i,j 6=0

(ln(Xi,j + t∆i,j)− ln(Xi,j))∆i,j d t

=
∑

i,j : ∆i,j 6=0

((Xi,j + ∆i,j) ln(Xi,j + ∆i,j)−

(Xi,j + ∆i,j)−∆i,j ln(Xi,j)−Xi,j ln(Xi,j) +Xi,j)

=
∑

i,j : ∆i,j 6=0

(Xi,j + ∆i,j)(ln(Xi,j + ∆i,j)− ln(Xi,j))

=
∑

i,j : ∆i,j 6=0

(Xi,j + ∆i,j) ln

(
1 +

∆i,j

Xi,j

)

(the free ∆i,j disappears from that second to last line because
∑
i,j : ∆i,j 6=0 ∆i,j =

0). Continuing with [1, 4.133], ln(1 + x) ≤ x for x > −1:

≤
∑

i,j : ∆i,j 6=0

(Xi,j + ∆i,j)
∆i,j

Xi,j

=
∑

i,j : ∆i,j 6=0

(
∆i,j +

∆2
i,j

Xi,j

)

=
∑

i,j : ∆i,j 6=0

∆2
i,j

Xi,j
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To prove inequality 3.31 further assume that ∆i,j/(Xi,j + 1) ≥ −3/4. Again
from equation 3.32

f ′′(t) ≥
∑

i,j : ∆i,j 6=0

∆2
i,j

∫ ∞
0

d y

(Xi,j + 1 + t∆i,j + y)2

=
∑

i,j : ∆i,j 6=0

∆2
i,j

Xi,j + 1 + t∆i,j

.

Combining with equation 3.33

f ′(t) ≥
∫ t

0

∑
i,j : ∆i,j 6=0

∆2
i,j

Xi,j + 1 + y∆i,j
d y

=
∑

i,j : ∆i,j 6=0

∆i,j(ln(Xi,j + 1 + t∆i,j)− ln(Xi,j + 1)).

Now it is enough to get a lower bound on:∫ 1

0

∑
i,j : ∆i,j 6=0

(ln(Xi,j + 1 + t∆i,j)− ln(Xi,j + 1))∆i,j d t

=
∑

i,j : ∆i,j 6=0

((Xi,j + 1 + ∆i,j) ln(Xi,j + 1 + ∆i,j)−

(Xi,j + 1 + ∆i,j)−∆i,j ln(Xi,j + 1)−
(Xi,j + 1) ln(Xi,j + 1) +Xi,j + 1)

=
∑

i,j : ∆i,j 6=0

(Xi,j + 1 + ∆i,j)(ln(Xi,j + 1 + ∆i,j)− ln(Xi,j + 1))

=
∑

i,j : ∆i,j 6=0

(Xi,j + 1 + ∆i,j) ln

(
1 +

∆i,j

Xi,j + 1

)

(the free ∆i,j disappears from that second to last line because
∑
i,j : ∆i,j 6=0 ∆i,j =

0). Using ln(1 + x) ≥ x/(1 + 2
3
x) for x ≥ −3/4.

≥
∑

i,j : ∆i,j 6=0

(Xi,j + 1 + ∆i,j)

∆i,j

Xi,j+1

1 + 2
3

∆i,j

Xi,j+1

=
∑

i,j : ∆i,j 6=0

(Xi,j + 1 + ∆i,j)

∆i,j

Xi,j+1

Xi,j+1+∆i,j−
∆i,j

3

Xi,j+1
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=
∑

i,j : ∆i,j 6=0

∆i,j
Xi,j + 1 + ∆i,j

Xi,j + 1 + ∆i,j − ∆i,j

3

=
∑

i,j : ∆i,j 6=0

∆i,j

1 +
∆i,j

3

Xi,j + 1 + ∆i,j − ∆i,j

3


=

∑
i,j : ∆i,j 6=0

∆2
i,j

3

Xi,j + 1 + ∆i,j − ∆i,j

3

≥
∑

i,j : ∆i,j 6=0

∆2
i,j

5Xi,j + 3

2

We have the following theorem:

Theorem 11 If X is a legal table minimizing equation 3.29 (over all legal tables)
and X > 0 then for any ∆ such that X + ∆ is a legal table and X + ∆ > 0

F (X + ∆)− F (X) ≤
∑
i,j

∆2
i,j

Xi,j

(3.34)

Furthermore, if for all i, j ∆i,j/(Xi,j + 1) ≥ −3/4 then

F (X + ∆)− F (X) ≥
∑
i,j

∆2
i,j

5Xi,j + 3
(3.35)

Proof: It is clear that
∑
i,j ∆i,jψ(Xi,j + 1) = 0 in this case and we get the result

from lemma 10. 2

3.21.2 Location of the minimum
Let X be a m by n non-negative matrix obeying row sums r, column sums c and
T =

∑m
i=1 ri =

∑n
j=1 cj . Define a m by n matrix, S(X), as follows:

S(X)i,j
def
=


+1 Xi,j ≥ ricj

T
+ 1

−1 Xi,j ≤ ricj
T
− 1

0 otherwise
(3.36)

We call an m by n matrix ∆ a “non-trivial balanced sub marking” of S(X) if:

• ∃i ∈ [1 · · ·m] ∃j ∈ [1 · · ·n] s.t. ∆i,j 6= 0 (“non-trivial”)
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• ∀i ∈ [1 · · ·m]
∑n
j=1 ∆i,j = 0

∀j ∈ [1 · · ·n]
∑m
i=1 ∆i,j = 0

(“balanced”)

• ∀i ∈ [1 · · ·m] ∀j ∈ [1 · · ·n] (∆i,j = S(X)i,j) ∨ (∆i,j = 0) (“sub-
marking”).

Lemma 11 Take X is a m by n non-negative matrix obeying row/column sums
r, c, T =

∑
i ri =

∑
j cj , ∆ a non-trivial balanced sub marking of S(X) and

∀i, j ricj
T
> 1. Then

F (X) > F (X −∆).

Proof: Let εi,j = Xi,j −
(
ricj
T

+ ∆i,j

)
. Notice that (εi,j < 0) → (∆i,j < 0) and

(εi,j > 0)→ (∆i,j > 0). Then

F (X)− F (X −∆) =
∑
i,j

(
ln Γ

(
ricj
T

+ ∆i,j + εi,j + 1
)
−

ln Γ
(
ricj
T

+ εi,j + 1
))

=
∑

i,j : ∆i,j>0

ln
(
ricj
T

+ εi,j + 1
)
−

∑
i,j : ∆i,j<0

ln
(
ricj
T

+ εi,j

)

≥
∑

i,j : ∆i,j>0

ln
(
ricj
T

)
−

∑
i,j : ∆i,j<0

ln
(
ricj
T
− 1

)

>
∑

i,j : ∆i,j>0

ln
(
ricj
T

)
−

∑
i,j : ∆i,j<0

ln
(
ricj
T

)
= 0.

2

Lemma 12 If S(X) is such that every row and every column has at least one +1
and at least one −1 then S(X) has a non-trivial balanced sub marking.

Proof: We can assume (without loss of generality) that S(X)1,1 = +1, S(X)1,2 =
−1 and S(X)2,1 = −1. This gets us into the general case used in this proof where
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we have ∆k the m by n matrix such that

(∆k)i,j =


+1 (i, j) = (1, 1)

(−1)min(i,j) (1 ≤ i ≤ k) ∧ (1 ≤ j ≤ k) ∧ (i = j ± 1)
0 otherwise

and ((∆k)i,j 6= 0) → ((∆k)i,j = S(X)i,j). We are going to use an inductive
argument on k. One such pattern (n = m = 5, k = 4) is:

+1 −1 0 0 0
−1 0 +1 0 0

0 +1 0 −1 0
0 0 −1 0 0
0 0 0 0 0

 .

Now if we know, as above, the initial k by k segment or S(X) we know (by the
given) there must be a (−1)k somewhere in column k. If S(X)k,k = (−1)k then
we see that if (−1)k is added to the (k, k) position of ∆k then we have the desired
non-trivial balanced sub marking. If S(X)i,k = (−1)k for some i < k−1 then we
see that if we add (−1)k to the (i, k) position of ∆k, zero out the column a < k
such that (∆k)i,a = (−1)k and then iteratively zero out all columns that have the
only non-zero entry for any row then what we have left is again the desired non-
trivial balanced sub marking. An example of this process is (n = m = 5, k =
5, S(X)1,5 = −1): 

+1 0 0 0 −1
−1 0 +1 0 0

0 0 0 0 0
0 0 −1 0 +1
0 0 0 0 0

 .

So either k = m and we must have a non-trivial balanced sub marking or we can
assume (by reordering rows) that S(X)k+1,k = (−1)k. By a similar column argu-
ment we see that either we have the desired marking or (by reordering columns)
S(X)k,k+1 = (−1)k. Thus we can say that either we are done or ∆k+1 is such that
((∆k+1)i,j 6= 0)→ ((∆k+1)i,j = S(X)i,j). 2

Theorem 12 If X is the m by n non-negative matrix obeying row/column sums
r, c minimizing equation 3.29 over all such tables and T =

∑m
i=1 ri =

∑n
j=1 cj

then for all i, j:

|Xi,j −
ricj
T
| ≤ (m+ n− 3) max(m− 1, n− 1).
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Proof: We proceed by induction on m and n. If m or n is less than two then
the theorem is trivial. For m = n = 2 the theorem follows immediately from
lemma 11. Assume the theorem is true for all a, b s.t. ((a < m)∨(b < n))∧(1 ≤
a ≤ m) ∧ (1 ≤ b ≤ n). Suppose every row and every column of X has an entry
Xi,j differing from ricj

T
by at least max(m−1, n−1). Then S(X) must satisfy the

conditions of lemma 12 allowing us to again apply lemma 11. So we assume that
there is some row or column where every entry is within max(m−1, n−1) of ricj

T
,

for discussion assume it is row m. Notice that the m− 1 by n initial submatrix of
X is the unique matrix minimizing equation 3.29 over all non-negative m− 1 by
n matrices satisfying row sums r and column sums cj − Xm,j . By our inductive
hypothesis we know that |Xi,j − ri(cj−Xm,j)

T−rm | ≤ max(m − 2, n − 1)(m + n − 4)

for i = 1 · · ·m − 1. We quickly see that for i < m we have |Xi,j − ricj
T
| ≤(

ri
T−rm +m+ n− 4

)
max(m− 1, n− 1). And for i < m we have ri

T−rm ≤ 1. 2
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Chapter 4

Open Problems

We would like to identify some important open problems in the areas touched on
in this thesis. For the Markov chains (used in both the optimization chapters and
contingency table chapters of the thesis) a number of important questions remain
open.

4.1 Effective diameter.
Most of the current upper bounds on the mixing time for Markov chains with
average step size δ whose states are contained in a convex body of diameter d
involve a factor of (d/δ)2. It would be a big breakthrough to be able to measure
both d and δ in the infinity (or max) metric without introducing factors of n. It
would also be a big improvement to be able to use the “effective diameter” or the
expected distance between two points in K instead of d which is the maximum
distance between any two points in K. Any of these improvements would lead to
much better bounds for mixing time.

4.2 Non-stationary processes.
A method to analyze non-stationary processes would be very useful. This would
not only allow us to directly prove mixing rates for simulate annealing but would
allow the development of adaptive algorithms. An adaptive algorithm would start
with a simple Markov chain that could have a poor mixing rate due to states with
low local conductance. Such a chain could be repaired when detected by forc-
ing smaller steps near the bad states encountered. If good time bounds could be

87



developed for such a scheme then one would only have to run the Markov chain
for a time proportional to the rate bad states are actually encountered instead of
proportional to a weak upper bound on this rate.

4.3 Convergence acceleration.
The linear operator interpretation of Markov chains opens the question if any of
the many methods of convergence acceleration methods used to accelerate itera-
tive linear systems can be applied to Markov chains. I do not know if this is pos-
sible but have thought about applying Chebyshev acceleration[35] to a Markov
chain.

The idea in Chebyshev acceleration is that if one has a process Xi+1 =
(XiP )/(‖XiP‖1) that starts with X0 and P has a unique eigenvector, π, with
(largest) eigenvalue 1 such that π = limt→∞Xt. Then if one applies the operator t
times to get the vectorsX0, X1, · · ·Xt thenXt is not the best estimate for π. There
is a estimate π̂ =

∑t
i=0 λiXi where the λi are explicit constants independent of Xi

and P that is a better estimate of π than Xt is. Not all the λi are non-negative.
The problem for Markov chains is that we realizeXi as a probability vector, so

the subtractions needed to compute π̂ have no natural interpretation in this context.
In addition the Markov chain is only able to estimateXi- so if the λi are large (and
they are) then errors in estimating Xi soon make π̂ unusable.1

4.4 Unary polynomial time in row/column sums.
For the contingency table problem it would be nice to develop chains that ran
in unary polynomial time in T , that total of all rows and columns. The current
inability to do this represents a major weakness in current uniform generation
techniques for contingency tables. A unary polynomial time algorithm to gen-
erate contingency tables from the uniform distribution would be useful for two
simple reasons. First, even though T can be vary large in principle it is typically
a number that some statistician has counted up to. In practice many contingency
tables are constructed as summary statistics of lists of people. So even though it
takes no more that nm log(T ) space to write down such a table it often took the

1Chebyshev acceleration seems to improve bias at the expense of amplifying variance. In
explicit eigenvector problems the only source of variance is rounding error- so this is a good trade.
In random processes the variance is large to begin with.

88



statistician time proportional to T to generate it. Thus an algorithm that runs in
time polynomial in T would be very useful to a statistician, though the computer
scientist would of course like to see one that runs in time polynomial in log(T ).
In this same vein there is an obvious and efficient method to generate tables from
the Fisher-Yates or hypergeometric distributions in time polynomial in T . The
method is just to build a large complete bipartite graph with T left nodes and T
right nodes. One labels each right node with an index from 1 · · ·m such that ri
right nodes have index i. One labels each left node with an index from 1 · · ·n
such that cj right nodes have index j. Then one chooses at random, from the
uniform distribution, a perfect matching of the left to right nodes. The matrix X
such that Xi,j is the number of right nodes marked with i that are matched up with
left nodes marked with j is then a contingency table consistent with (r, c) and is
Fisher-Yates distributed. It would be nice to have a comparable algorithm for the
uniform case.

4.5 Higher way contingency tables.
Contingency tables representing relationships between more the two variables
have been proposed. There is some freedom in defining what constraints are in
three (and higher) way tables. If we define k−way contingency tables to be k
dimensional block of non-negative integers Xi1,i2,···,ik constrained such that∑

il

Xi1,i2,···,ik = ci1,···,il−1,∗,il+1,···,ik ∀l

where the ci1,···,il−1,∗,il+1,···,ik are constants. Then there is no known scheme for
approximately counting the number of constrained 3-way tables as this would
be sufficient to approximately compute the general permanent.2 We show this
by encoding the set of perfect matchings of an arbitrary bipartite graph in a 3-way
table. LetG be a bipartite graph with vertex sets V1, V2 and edges setE ⊆ V1×V2.
We define X , a 3 way table with dimensions |V1| × |V2| × 2, and set

c∗,j,1 = 1

ci,∗,1 = 1

ci,j,∗ =

{
1 (i, j) ∈ E
0 otherwise

2Sinclair and Jerrum settled the question of computing the dense permanent, the general case
remains open.
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c∗,j,2 =
∑
i

ci,j,∗ − 1

ci,∗,2 =
∑
j

ci,j,∗ − 1

Then for any X obeying these constraints we see that the set of (i, j) such that
Xi,j,1 6= 0 is a perfect matching of G and all perfect matchings of G can be so
encoded.

Similarly, a 4-way table has enough structure to encode a three dimensional
matching, so the decision problem itself is NP complete.

4.5.1 Simpson’s paradox
One might wonder if there is any actual necessity for higher way tables. Perhaps
one could collapse the information in a 3 way table into a two way table with a
comparable number of cells and still perform a meaningful analysis. We present
here an example, exploiting the well known Simpson’s paradox, that should illus-
trate that this is not the case.

Consider the 3 way table in table 4.1, which could arise from a drug trial run
in two cities.

City A City B
Drug 67 33 Drug 550 450

Control 590 410 Control 50 50
Good Bad Good Bad

Table 4.1: Drug trial in two cities.

This data can obviously be organized into a 3 way table indexed by treatment
(drug/control), result (good/bad) and city (A/B). The obvious way to pair this data
into a two dimensional table would be to add the city A data to the city B data to
form a summary table like table 4.2.

The problem is that there is no way to tell if important information has been
thrown away in this summarizing step. In table 4.1 the drug has a lower rate of
bad effects than control in both city A and city B. However in table 4.2 we see
that drug has a higher rate of bad effects than control over all. It is impossible to
determine from only examining the data if summarizing table 4.1 into table 4.2
was legitimate. If one believes that the populations in city A and city B are iden-
tical and that the selection process that divide people into drug and control trials
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Cities A + B
Drug 617 483

Control 640 460
Good Bad

Table 4.2: Drug trial summary.

was independent of any properties of the city populations (like only city B got
funding for a big drug trial) then one might want to use the summary data. If one
does not believe that the cities have identical populations and an indifferent selec-
tion mechanism then one can not draw any conclusions because for all practical
purposes city A ran only a control group and city B ran only a drug group.

91



Bibliography

[1] ABRAMOWITZ, MILTON; STEGUN, IRENE, “Handbook of Mathematical
Functions”, Dover Publications, New York, 1972.

[2] AGRESTI, ALAN, “Categorical Data Analysis”, Wiley-Interscience, New
York, 1990.

[3] ALDOUS, D.; DIACONIS, P., Shuffling Cards and Stopping Times, Amer.
Math. Monthly, Num 93, pp. 333-348.

[4] APPLEGATE, D. Sampling, Integration and Computing the Volume, PhD
Thesis, School of Computer Science, Carnegie Mellon University, Decem-
ber 1991, CMU-CS-91-207.

[5] APPLEGATE, DAVID; KANNAN, RAVI, Sampling and integration of near
log-concave functions, 23rd ACM Symposium on the Theory of Comput-
ing, 1991.

[6] BAGLIVO, JENNY; OLIVIER, DONALD; PAGANO, MARCELLO, Methods
for Exact Goodness-of-Fit Tests, Journal of the American Statistical Asso-
ciation, Vol. 87, No. 418, June 1992.

[7] BAGLIVO, JENNY; OLIVIER, DONALD; PAGANO, MARCELLO, Methods
for the Analysis of Contingency Tables with Large and Small Cell Counts,
Journal of the American Statistical Association, Vol. 83, No. 404, Decem-
ber 1988.

[8] BARVINOK, A.I., A Polynomial Time Algorithm for Counting Integral
Points in Polyhedra When the Dimension is Fixed, 34th Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Nov
1993.

92
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Appendix A

Notation

Notation used in this thesis.
Br(x) The ball of radius r centered at x.
Cr(x) The cube of side 2r centered at x.
C(u) Shorthand for C1/2(x).
δi,j Kronecker delta, 1 if i = j, 0 otherwise.
Ei The i’th standard unit vector, Ei

j = δi,j .
erf(x) Error function.
Γ(x) Euler gamma function.
Lin(x1, · · · , xn) Linearity space of x1, · · · , xn.
T (r1, · · · rm; c1, · · · cn) The set of all m by n non-negative integer matrices

with rows sums r1, · · · rm and column sums c1, · · · , cn.
Qn Rational n space.
Qn+ The set of x ∈ Qn such that x ≥ 0.
Rn Euclidean n space.
Rn+ The set of x ∈ Rn such that x ≥ 0.
Zn The standard integer lattice in n space.
](X) The number of elements in the set X .
](r; c) Shorthand for ](T (r; c)).
< x1, · · · , xn > Group generated by x1, · · · , xn.
|X| The number of elements in the set X or length of X

(depending if X is a set, scalar or vector).
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Appendix B

Complete 3× 3 solution

The complete enumeration oracle for 3 by 3 contingency tables is used as follows.
One starts with row sums [x1, x2, x3] and column sums [x4, x5, x1 + x2 + x3 −
x4−x5] and arranges them (by row swaps, columns swaps and transpose) to obey
all of the relations in table B.1 (the table margins are sorted so the row/column
demands are non-decreasing and the first row demand in no bigger than the first
column demand).

[ 1 0 0 −1 0 ] · x ≤ 0
[ −1 −1 −1 1 2 ] · x ≤ 0
[ 0 0 0 1 −1 ] · x ≤ 0
[ 0 1 −1 0 0 ] · x ≤ 0
[ 1 −1 0 0 0 ] · x ≤ 0

Table B.1: Global relations for 3 by 3 contingency tables.

Then one navigates down the decision tree, figure B.1, moving down a dashed
arc when an inequality from table B.2 is violated and down a solid arc otherwise.

The chamber labeled by the leaf reached then has the correct polynomial and
the values x1, · · · , x5 are substituted into the polynomial to get the desired count.
A complete list of the 3 by 3 polynomials follows.
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chamber0
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Figure B.1: Decision tree for 3 by 3 contingency tables.
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rel0 : [ 0 0 1 −1 −1 ] · x ≤ 0
rel1 : [ 0 1 0 −1 −1 ] · x ≤ 0
rel2 : [ 0 1 0 −1 0 ] · x ≤ 0
rel3 : [ 0 1 0 0 −1 ] · x ≤ 0
rel4 : [ 1 0 1 −1 −1 ] · x ≤ 0
rel5 : [ 1 1 0 −1 −1 ] · x ≤ 0
rel6 : [ 1 1 0 −1 0 ] · x ≤ 0
rel7 : [ 1 1 0 0 −1 ] · x ≤ 0

Table B.2: Decision tree inequalities for 3 by 3 contingency tables.
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